Skip to main content

Chañar Gum (Geoffroea decorticans)

  • Reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Given that we are in an increasingly competitive market generating more effective and creative strategies is essential to impact consumers positively. The main objective of the present work was to develop products from the flour obtained from the peel and pulp of the chañar fruit Geoffroea decorticans. Chañar is a regional tree; the fruit collection and use would allow the integral use of a tree that is considered a pest and, in turn, complies with the growing interest in sustainably using natural resources. Chañar gum, a polysaccharide type, is obtained from chañar flour through thermal hydrolysis. Physicochemical characterizations were carried out to the gum obtained, such as density, viscosity, diffusion, refractive index, UV-Visible, and Infrared spectroscopy. This study showed the possibility of getting a gum after hydrolysis with a yield of 5% wt. The results indicate that chañar flour has an energy value of 163 kcal, and carbohydrate content of 35.9 g in 100 g of chañar flour, values ​​suitable for any diet food. Furthermore, the chañar gum has potential application characteristics such as co-emulsifier, thickener, film-forming, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen KE (2016) Health beneficial consumer products—status and trends. In: Osborn S, Morley W (eds) Developing food products for consumers with specific dietary needs. Woodhead Publishing, Cambridge

    Google Scholar 

  2. Orrabilis CJ (2014) Aprovechamiento Integral de los Frutos de Geoffroea decorticans (chañar), de la Región Fitogeográfica de la Provincia de Formosa. PhD. Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina

    Google Scholar 

  3. Araya H, Lutz M (2003) Alimentos saludables y funcionales. Rev Chil Nutr 30:8–14

    Article  Google Scholar 

  4. Becker R (1983) Nutritional quality of the fruit from the chañar tree (Geoffroea decorticans). Ecol Food Nutr 13(2):91–97

    Article  CAS  Google Scholar 

  5. Silva R, Ruiz RL, Ruiz SO (2004) Estudio fitoquímico de frutos de Geoffroea decorticans (Gill. ex Hook. et Arn.) Burk. Leguminosae (Fabaceae). Acta Farm Bonaer 23(4):524–526

    CAS  Google Scholar 

  6. Orrabalis CJ, Mufari JR, Gorostegui HA, Calandri EL, Guzman CA (2015) Chemical and nutritional characterization of fruits from Geoffroea decorticans tree (Chañar) and their parts, from Argentine subtropical forest. Adv Bot Res 1:27–33

    Google Scholar 

  7. Dirección de Bosques; Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2012). http://ambiente.gob.ar/especies/productos-forestales-no-madereros/. Accessed 7 July 2017

  8. Tognelli MF, Borghi CE, Campos CM (1999) Effect of gnawing by Microcavia australis (Rodentia, Caviidae) on Geoffroea decorticans (Leguminosae) plants. J Arid Environ 41(1):79–85

    Article  Google Scholar 

  9. Echeverría JC (2006) Control químico del chañar en San Luis. EEA Santiago del Estero. INTA. Santiago del Estero. Grupo CREA Semiárido Norte. AR. Sociedad Rural Zonal Frías. AR. Conferencia: Jornada de Actualización Técnica en Manejo y Control del Renoval. Junio de 2006. Santiago del Estero, Agentina. Memoria Técnica de la Primera Jornada de Actualización Técnica sobre Manejo y Control del Renoval. Editor, Carlos Roberto; Kunst, INTA Santiago del Estero, pp 119–128

    Google Scholar 

  10. Australian New Crops Website (2017) Supported by the rural industries research and development corporation: list of interesting plants of the world. http://www.newcrops.info/listing/species_pages_G/Geoffroea_decorticans_trends.htm. Accessed 8 Oct 2017

  11. Hurrell JA, Ulibarri EA, Delucchi G, Pochettino ML (2010) Biota Rioplatense XV. Frutas frescas, secas y preservadas. Lola, Buenos Aires

    Google Scholar 

  12. Chañar tree flowering. http://www.callesderosario.com.ar/chaniar.html. Accessed 14 July 2021

  13. Chañar tree trunk. https://www.facebook.com/YoAmoLaPampa/posts/844227168960121/. Accessed 14 July 2021

  14. Chañar flower. https://cerrito.gob.ar/reservalovera/?p=762. Accessed 14 July 2021

  15. Eynard C, Galetto L (1999) Estructura floral y variabilidad intraespecífica de Geoffroea decorticans (Fabaceae). Darwin 37:219–228

    Google Scholar 

  16. Burkart AE (1987) Leguminosae, Rafflesiaceae. In: Burkart AE (ed) Flora ilustrada de Entre Ríos (Argentina), partes 1–6. INTA, Buenos Aires

    Google Scholar 

  17. Mereles F, Stephan G (2004) Geoffroea decorticans. Enzyklopädieder Holzgewächse: Handbuchund Atlas der Dendrologie, pp 1–4

    Google Scholar 

  18. Geoffroea decorticans (Chañar) Northof Chile (2021) Descriptions and images. http://www.chilebosque.cl/tree/geoffroea_decorticans.html. Accessed 14 July 2021

  19. Lamarque A, Labuckas D, Greppi J, Fortunato R (2009) Electrophoretic analysis of Geoffroea (Leguminosae, Papilionoideae): taxonomic inferences in Argentinean populations. Austral Syst Bot 22:137–142

    Article  CAS  Google Scholar 

  20. Bonino EE, Araujo P (2005) Structural differences between a primary and a secondary forest in the argentine dry Chaco and management implications. For Ecol Manag 206(1–3):407–412

    Article  Google Scholar 

  21. Colla R (2018) Producción de alimentos a base de Chañar (RN° 139/18). Food engineering thesis, Universidad Nacional de San Luis, San Luis, Argentina

    Google Scholar 

  22. Chañar fruit and leaves. https://pbs.twimg.com/media/DS8t8YLXkAM8dI-.jpg. Accessed 7 July 2021

  23. Marticorena C, Quezada M (1985) Catálogo de la Flora Vascular de Chile. Gayana Bot 42:1–157

    Google Scholar 

  24. Eynard C, Galetto L (2002) Pollination ecology of Geoffroea decorticans (Fabaceae) in central Argentine dry forest. J Arid Environ 51(1):79–88

    Article  Google Scholar 

  25. Maestri DM, Fortunato RH, Greppi JA, Lamarque AL (2001) Compositional studies of seeds and fruits from two varieties of Geoffroea decorticans. J Food Compost Anal 14(6):585–590

    Article  CAS  Google Scholar 

  26. Orrabalis CJ, Gorostegui H, Calandri E, Guzmán C (2013) Parámetros funcionales y contenido de glucosa en harinas obtenidas de fruto maduro de “chañar” (Geoffroea decorticans) de la zona semiárida y árida de la provincia de Formosa. Multequina 22

    Google Scholar 

  27. Cittadini MC, García-Estévez I, Escribano-Bailón MT, Bodoira RM, Barrionuevo D, Maestri D (2021) Nutritional and nutraceutical compounds of fruits from native trees (Ziziphus mistol and Geoffroea decorticans) of the dry Chaco forest. J Food Compost Anal 97:103775

    Article  CAS  Google Scholar 

  28. Somaini GC, Aybar MJ, Vera NR, Tríbulo C (2021) Geoffroea decorticans fruit extracts inhibit the wnt/β-catenin pathway, a therapeutic target in cancer. Biochem Biophys Res Commun 546:118–123

    Article  CAS  PubMed  Google Scholar 

  29. Costamagna MS, Gómez-Mascaraque LG, Zampini IC, Alberto MR, Pérez J, López-Rubio A, Isla MI (2017) Microencapsulated chañar phenolics: a potential ingredient for functional foods development. J Funct Foods 37:523–530

    Article  CAS  Google Scholar 

  30. Vila J, Balderrama L, Bravo JL, Almanza G, Codina C, Bastida J, Connolly J (1998) Prenylflavonoids from Geoffroea decorticans. Phytochemistry 49(8):2525–2528

    Article  CAS  Google Scholar 

  31. Costamagna MS, Ordóñez RM, Zampini IC, Sayago JE, Isla MI (2013) Nutritional and antioxidant properties of Geoffroea decorticans, an Argentinean fruit, and derived products (flour, arrope, decoction and hydroalcoholic beverage). Int Food Res J 54(1):160–168

    Article  CAS  Google Scholar 

  32. Reynoso MA, Vera N, Aristimuño ME, Daud A, Riera AS (2013) Antinociceptive activity of fruits extracts and “arrope”of Geoffroea decorticans (chañar). J Ethnopharmacol 145(1):355–362

    Article  CAS  PubMed  Google Scholar 

  33. Orrabalis C, Gorostegui H, Calandri E, Guzmán C (2014) Chemical characterization and sensory evaluation of new sweets made with Geoffroea decorticans fruits, Fabaceae, Phyton. Int J Exp Bot 83(1):117–125

    Google Scholar 

  34. Orrabalis CJ, Gorostegui HA, Calandri EL, Guzmán CA (2013) Obtención y caracterización de harinas elaboradas a partir del fruto maduro de Geoffroea decorticans “Chañar” de la zona centro-oeste de la Provincia de Formosa, Argentina. Natura Neotropicals 44(1):29–40

    Google Scholar 

  35. Reynoso MA, Sanchez Riera AN, Vera NR (2016) Nutraceutical properties and safety evaluation of fruits and arrope of Geoffroea decorticans (Chañar). Int J Food Sci Nutr 6:485

    Google Scholar 

  36. Salvat A, Antonacci L, Fortunato RH, Suárez EY, Godoy HM (2004) Antimicrobial activity in methanolic extracts of several plant species from northern Argentina. Phytomedicine 11(2–3):230–234

    Article  CAS  PubMed  Google Scholar 

  37. Quiroga EN, Sampietro DA, Sgariglia MA, Soberón JR, Vattuone MA (2009) Antimycotic activity of 5′-prenylisoflavanones of the plant Geoffroea decorticans, against Aspergillus species. Int J Food Microbiol 132(1):42–46

    Article  CAS  PubMed  Google Scholar 

  38. Scarpa GF (2004) Medicinal plants used by the Criollos of Northwestern Argentine Chaco. J Ethnopharmacol 91(1):115–135

    Article  PubMed  Google Scholar 

  39. Santibáñez C, Vargas M (2017) Geoffroea decorticans for biofuels: a promising feedstock. J Renew Energy 2017:1–5

    Article  CAS  Google Scholar 

  40. Bertero M, Gorostegui HA, Orrabalis CJ, Guzmán CA, Calandri EL, Sedran U (2014) Characterization of the liquid products in the pyrolysis of residual chañar and palm fruit biomasses. Fuel 116:409–414

    Article  CAS  Google Scholar 

  41. Palmieri VS, Trillo C, López ML (2019) Rasgos diagnósticos en frutos y residuos secos de la cocción de chañar (Geoffroea decorticans, Fabaceae) para identificar prácticas poscolecta. Intersecc en Antropol 20(2):167–180

    Google Scholar 

  42. Maschio JI, Boeri PA, Dalzotto D, Piñuel ML, Sharry S (2021) Caracterización química y nutricional de harina de chañar de diferente distribución geográfica. Bionatura 6(1):1563–1568

    Article  Google Scholar 

  43. Rufino MDS, Pérez-Jiménez J, Tabernero M, Alves RE, De Brito ES, Saura-Calixto F (2010) Acerola and cashew apple as sources of antioxidants and dietary fibre. Int J FoodSci Technol 45(11):2227–2233

    Article  CAS  Google Scholar 

  44. Masuelli MA, Slatvustky A, Ochoa A, Bertuzzi MA (2018) Physicochemical parameters for Brea gum exudate from Cercidium praecox tree. J Colloid Interface Sci 2(4):72

    Article  CAS  Google Scholar 

  45. Lamarque AL, Maestri DM, Zygadlo JA, Guzmán CA (2000) Chemical evaluation of Geoffroea decorticans seeds as source of oil and protein. Grasas Aceites 51(4):241–243

    Article  CAS  Google Scholar 

  46. Moreno-Arribas MV (2017) La importancia del color en los alimentos. Revista de tecnología e higiene de los alimentos, ISSN 0300-5755, 486, pp. 6–7

    Google Scholar 

  47. https://www.e-paint.co.uk/Convert_Lab.asp. Accessed Dec 2017

  48. Ruano P, Lazo Delgado L, Picco S, Villegas L, Tonelli F, Aguilera Merlo M, Masuelli M (2019) Extraction and characterization of pectins from peels of criolla oranges (Citrus sinensis): experimental reviews. In: Masuelli M (ed) Pectins - extraction, purification, characterization and applications. Intechopen Publishing, Rijeka

    Google Scholar 

  49. Zanon M, Masuelli M (2018) Purification and characterization of Alcayota gum. Exp Rev Biopolym Res 2:105

    Google Scholar 

  50. Masuelli MA (2018) Hydrodynamic parameters of Strelitzia gum. J Colloid Interface Sci 2(4):45

    Article  CAS  Google Scholar 

  51. Masuelli MA, Takara A, Acosta A (2013) Hydrodynamic properties of tragacanthin. Study of temperatura influence. J Argent Chem Soc 100:25–34

    Google Scholar 

  52. Masuelli MA (2013) Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect. J Polym Biopolym Phys Chem 1(1):13–21

    Google Scholar 

  53. Masuelli MA (2013) Hydrodynamic properties of whole Arabic gum. Am J Food Technol 1(3):60–66

    Google Scholar 

  54. Viel S, Capitani D, Mannina L, Segre A (2003) Diffusion-ordered NMR spectroscopy: a versatile tool for the molecular weight determination of uncharged polysaccharides. Biomacromolecules 4(6):1843–1847

    Article  CAS  PubMed  Google Scholar 

  55. Chaiklahan R, Chirasuwan N, Triratana P, Tia S, Bunnag B (2014) Effect of extraction temperature on the diffusion coefficient of polysaccharides from Spirulina and the optimal separation method. Biotechnol Bioprocess Eng 19(2):369–377

    Article  CAS  Google Scholar 

  56. Comper WD, Zamparo O (1990) Hydrodynamic properties of connective-tissue polysaccharides. Biochem J 269(3):561–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Makri EA, Doxastakis GI (2007) Surface tension of Phaseolus vulgaris and coccineus proteins and effect of polysaccharides on their foaming properties. Food Chem 101(1):37–48

    Article  CAS  Google Scholar 

  58. Hoorfar M, Kurz MA, Policova Z, Hair ML, Neumann AW (2006) Do polysaccharides such as dextran and their monomers really increase the surface tension of water? Langmuir 22(1):52–56

    Article  CAS  PubMed  Google Scholar 

  59. Lundqvist H, Eliasson AC, Olofsson G (2002) Binding of hexadecyltrimethylammonium bromide to starch polysaccharides. Part I. Surface tensionmeasurements. Carbohydr Polym 49(1):43–55

    Article  CAS  Google Scholar 

  60. Cheong KL, Wu DT, Zhao J, Li SP (2015) A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J Chromatogr A 1400:98–106

    Article  CAS  PubMed  Google Scholar 

  61. Karlsson A, Singh SK (1999) Acid hydrolysis of sulphated polysaccharides. Desulphation and theeffecton molecular mass. Carbohydr Polym 38(1):7–15

    Article  CAS  Google Scholar 

  62. Shu X, Zhang Y, Jia J, Ren X, Wang Y (2019) Extraction, purification and properties of water-soluble polysaccharides from mushroom Lepista nuda. Int J Biol Macromol 128:858–869

    Article  CAS  PubMed  Google Scholar 

  63. Okajima-Kaneko M, Ono M, Kabata K, Kaneko T (2007) Extraction of novel sulfated polysaccharides from Aphanothece sacrum (Sur.) Okada, and its spectroscopic characterization. Pure Appl Chem 79(11):2039–2046

    Article  CAS  Google Scholar 

  64. Mitić Ž, Cakić M, Nikolić GM, Nikolić R, Nikolić GS, Pavlović R, Santaniello E (2011) Synthesis, physicochemical and spectroscopic characterizationofcopper (II)-polysaccharide pullulan complexes by UV–vis, ATR-FTIR, and EPR. Carbohydr Res 346(3):434–441

    Article  PubMed  CAS  Google Scholar 

  65. Chen Z, Zhang W, Tang X, Fan H, Xie X, Wan Q, Tang JZ (2016) Extraction and characterization of polysaccharides from semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC. Carbohydr Polym 144:263–270

    Article  CAS  PubMed  Google Scholar 

  66. He L, Yan X, Liang J, Li S, He H, Xiong Q, Huang S (2018) Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydr Polym 198:101–108

    Article  CAS  PubMed  Google Scholar 

  67. Lopez-Torrez L, Nigen M, Williams P, Doco T, Sánchez C (2015) Acacia senegal vs. Acacia seyal gums–part 1: composition and structure of hyperbranched plant exudates. Food Hydrocoll 51:41–53

    Article  CAS  Google Scholar 

  68. Boulet JC, Williams P, Doco T (2007) A Fourier transform infrared spectroscopy study of wine polysaccharides. Carbohydr Polym 69(1):79–85

    Article  CAS  Google Scholar 

  69. Barth A, Zscherp C (2002) What vibrations tell about proteins. Q Rev Biol 35(4):369–430

    CAS  Google Scholar 

  70. Sene CF, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106(4):1623–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195–203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to especially thank PROIPRO 2-2918-UNSL for providing support in the development of this work, Laboratorio de Investigación y Servicios de Química Física (LISeQF-UNSL), Instituto de Física Aplicada-CONICET-Universidad Nacional de San Luis; Dr. Ariel Ochoa-Laboratorio de Membranas y Biomateriales INFAP-CONICET-UNSL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lismet Lazo or Martin Masuelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lazo, L. et al. (2022). Chañar Gum (Geoffroea decorticans). In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-91378-6_14

Download citation

Publish with us

Policies and ethics