Skip to main content

Insights of Extreme Desert Ecology to the Habitats and Habitability of Mars

  • Chapter
  • First Online:
Microbiology of Hot Deserts

Part of the book series: Ecological Studies ((ECOLSTUD,volume 244))

Abstract

Desert ecosystems are a key repository for important Mars analog habitats and the extant or extinct life within them. We provide an overview of four main desert habitat types—soils, sediments, salts, and rocks—and the extreme microbiology living within them, with a particular focus on the hyperarid Atacama Desert and Dry Valleys of Antarctica, the driest and coldest limits for life on Earth. We construct habitat maps of Mars from an ecological perspective and the first estimates of study sample sizes of key habitats from historical and recent Mars orbiter and lander imagery and data. We review the lessons that can be drawn for the search for life on Mars from decades of microbial ecology work in end-member terrestrial deserts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbey W, Anderson R, Beegle L, Hurowitz J, Williford K, Peters G, Morookian J, Collins C, Feldman J, Kinnett R, Jandura L, Limonadi D, Logan C, McCloskey S, Melko J, Okon A, Robinson M, Roumeliotis C, Seybold C, Singer J, Warner N (2019) A look back: the drilling campaign of the curiosity rover during the Mars science Laboratory’s prime Mission. Icarus 319:1–13

    Article  Google Scholar 

  • Albarracín VH et al (2015) High-up: a remote reservoir of microbial extremophiles in central Andean wetlands. Front Microbiol 6:1404

    Article  PubMed  PubMed Central  Google Scholar 

  • Amend A, Cobian G, Laruson A, Remple K, Tucker S, Poff K, Antaky C, Boraks A, Jones C, Kuehu D, Lensing B, Pejhanmehr M, Richardson D, Riley P (2019) Phytobiomes are compositionally nested from the ground up. PeerJ 7:e6609. https://doi.org/10.7717/peerj.6609

    Article  PubMed  PubMed Central  Google Scholar 

  • Amundson R, Dietrich W, Bellugi D, Ewing S, Nishiizumi K, Chong G, Owen J, Finkel R, Heimsath A, Stewart B (2012) Geomorphic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geol Soc Am Bull 124:1048–1070

    Article  Google Scholar 

  • Andrews-Hanna J, Zuber M, Arvidson R, Wiseman S (2010) Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. JGR 115:E06002. https://doi.org/10.1029/2009JE003485

    Article  Google Scholar 

  • Archer S, de los Ríos A, Lee K, Niederberger T, Cary C, Coyne K, Douglas S, Lacap-Bugler D, Pointing S (2017) Endolithic microbial diversity in sandstone and granite from the McMurdo dry valleys, Antarctica. Polar Biol 40:997–1006. https://doi.org/10.1007/s00300-016-2024-9

    Article  Google Scholar 

  • Artieda O et al (2015) Surface evolution of salt-encrusted playas under extreme and continued dryness. Earth Surf Process Landf 40(14):1939–1950

    Article  Google Scholar 

  • Arvidson RE, Gooding JL, Moore H (1989) The Martian surface as imaged, sampled, and analyzed by the Viking landers. Rev Geophys 27:39–60. https://doi.org/10.1029/RG027i001p00039

    Article  Google Scholar 

  • Arvidson R, Bonitz R, Robinson M, Carsten J, Volpe R, Trebi-Ollennu A, Mellon M, Chu P, Davis K, Wilson J, Shaw A, Greenbergre R, Siebach K, Stein T, Cull S, Goetz W, Morris R, Ming D, Keller H, Lemmon M, Sizemore H, Mehta M (2009) Results form the Mars Phoenix Lander robotic arm experiment. JGR 114:E00#02. https://doi.org/10.1029/2009JE003408

    Article  Google Scholar 

  • Azúa-Bustos A, Gonzálaz-Silva C, Mancilla RA, Salas L, Gómez-Silva B, McKay CP, Vicuña R (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Micro Ecol 61:568–581. https://doi.org/10.1007/s00248-010-9784-5

    Article  Google Scholar 

  • Azúa-Bustos A, González-Silva C, Corsini G (2017) The Hyperarid Core of the Atacama Desert, an extremely dry and carbon deprived habitat of potential interest for the field of carbon science. Front Microbiol 8:993. https://doi.org/10.3389/fmicb.2017.00993

    Article  PubMed  PubMed Central  Google Scholar 

  • Azúa-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D, Fernández-Martínez MA, García-Descalzo L, García-Villadangos M, Martin-Redondo M, Sánchez-García L, Wierzchose J, Parro V (2018) Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep 8:16706. https://doi.org/10.1038/s41598-018-35051-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagaley D (2006) Uncovering bacterial diversity on and below the surface of a hyper-arid environment, the Atacama Desert, Chile. Thesis, Louisana State University, Baton Rouge, 156 pp

    Google Scholar 

  • Bahl J, Lau M, Smith G, Vijaykrishna D, Cary SC, Lacap D (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. https://doi.org/10.1038/ncomms1167

    Article  CAS  PubMed  Google Scholar 

  • Baldridge A, Farmer J, Moersch J (2004) Mars remote sensing analog studies in the Badwater Basin, Death Valley, California. JGR 109:E12006. https://doi.org/10.1029/2004JE002315

    Article  CAS  Google Scholar 

  • Bandfield JL (2002) Global mineral distributions on Mars. J Geophys Res Planets 107(E6):9–1

    Article  Google Scholar 

  • Bandfield JL, Glotch TD, Christensen PR (2003) Spectroscopic identification of carbonate minerals in the Martian dust. Science 301:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Barrett J, Virginia R, Wall D, Parsons A, Powers L, Burkins M (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85(11):3105–3118

    Article  Google Scholar 

  • Barrett J, Ball B, Simmons B (2009) Standard procedures for soil research in the McMurdo dry valleys LTER, pp. 1–32

    Google Scholar 

  • Barrow C (1992) In: Middleton N, Thomas D (eds) World atlas of desertification, vol 3. Edward Arnold, London, p 249

    Google Scholar 

  • Baumman K, Jung P, Samolov E, Lehnert L, Büdel B, Karsten U, Bendix J, Achilles S, Schermer M, Matus F, Oses R, Osses P, Morshedizad M, Oehlschläger C, Hu Y, Klysubun W, Leinweber P (2018) Biological soil crusts along a climatic gradient in Chile: richness and imprints of phototrophic microorganism in phosphorus biogeochemical cycling. Soil Biol Biochem 127:286–300. https://doi.org/10.1016/j.soilbio.2018.09.035

    Article  CAS  Google Scholar 

  • Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P (2019) Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol. https://doi.org/10.1038/s41559-019-1005-0

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. https://doi.org/10.1002/hyp.6325

    Article  CAS  Google Scholar 

  • Belnap J, Gillette D (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Belnap J, Harper K, Warren S (1994) Surface disturbance of cryptobiotic soil crusts: Nitrogenase activity, chlorophyll content and chlorophyll degradation. Arid Soil Res Rehab 8(1):1–8. https://doi.org/10.1080/15324989309381373

    Article  CAS  Google Scholar 

  • Belnap J, Hawkes C, Firestone M (2003a) Boundaries in miniature: two examples from soil. Bioscience 53(8):739–749

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange O (2003b) In: Belnap J, Lange OL (eds) Biological soils crusts: characteristics and distribution. Biological soil crusts: structure, function and management. Spring-Verlap, Berlin, pp 3–31

    Chapter  Google Scholar 

  • Belnap J, Welter J, Grimm N, Barger N, Ludwig J (2005) Linkages between microbial and hydrological processes in arid and semiarid watersheds. Ecology 86(2):298–307

    Article  Google Scholar 

  • Berner T, Evenari M (1978) The influence of temperature and light penetration on the abundance of the hypolithic algae in the Negev Desert of Israel. Oecologia 33:255–260

    Article  CAS  PubMed  Google Scholar 

  • Bezuidt O, Lebre P, Pierneef R, León-Sobrino C, Adriaenssens E, Cowan D, Van de Peer Y, Makhalanyane T (2020) Phages actively challenge nice communities in Antarctic soils. mSystems 5:e00234-20. https://doi.org/10.1128/mSystems.00234-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibring J, Langevin Y, Mustard J, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F, Omega team (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312:400–404

    Article  CAS  PubMed  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492. https://doi.org/10.1128/aem.66.4.1489-1492.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73. https://doi.org/10.1089/ast.2009.0430

    Article  CAS  PubMed  Google Scholar 

  • Black RF (1976) Periglacial features indicative of permafrost: ice and soil wedges. Quat Res 6:3–26

    Article  Google Scholar 

  • Bockheim J (1997) Properties and classification of cold desert soils from Antarctica. J Soil Sci Soc America 61:224–231

    Article  CAS  Google Scholar 

  • Bockheim J (2002) Landform and soil development in the McMurdo dry valleys, Antarctica: a regional synthesis. Arct Antarct Alp Res 34:308–317

    Article  Google Scholar 

  • Bockheim J, Haus N (2014) Distribution of organic carbon in the soils of Antarctica. In: Hartemink A, McSweeney K (eds) Soil carbon, Progress in soil science. Springer, Cham, pp 373–380

    Chapter  Google Scholar 

  • Bowker M, Belnap J, Daivdson D, Phillips S (2005) Evidence for micronutrient limitation of biological soil crusts: important to arid-lands restoration. Ecol Appl 15(6):1941–1951

    Article  Google Scholar 

  • Bowker M, Belnap J, Davidson D, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bowler J, Qi H, Kezao C, Head M, Baoyin Y (1986) Radiocarbon dating of playa-lake hydrologic changes: examples from northwestern China and Central Australia. Palaeogeogr Palaeoclimatol Palaeoecol 54:241–260. https://doi.org/10.1016/0031-0182(86)90127-6

    Article  CAS  Google Scholar 

  • Bowman JS et al (2016) Microbial community dynamics in two polar extremes: the lakes of the McMurdo Dry Valleys and the West Antarctic Peninsula marine ecosystem. Bioscience 66(10):829–847

    Article  Google Scholar 

  • Brady A, Slater G, Gibbons E, Kobs Nawotniak S, Hughes S, Payler S, Stevens A, Cockell C, Haberle C, Sehlke A, Elphic R, Lim D (2017). Detection of microbial organic biomarkers in terrestrial basalts in a Mars analogue environment. Astrobiological Science Conference, Arizona; #3492. LPI Contrib. No 1965

    Google Scholar 

  • Briere PR (2000) Playa, playa lake, sabkha: proposed definitions for old terms. J Arid Environ 45:1–7. https://doi.org/10.1006/jare.2000.0633

    Article  Google Scholar 

  • Broady P, Kibblewhite A (1991) Morphological characterization of Oscillatoriales (cyanobacteria) from Ross Island and southern Victoria land. Antarct Antarct Sci 3(1):35–45. https://doi.org/10.1017/S0954102091000007X

    Article  Google Scholar 

  • Brown A, Viviano C, Goudge T (2019) Olivine-carbonate mineralogy of the Jezero crater region. JGR Planets 125:e2019JE006011. https://doi.org/10.1029/2019JE006011

    Article  CAS  Google Scholar 

  • Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes:385–398

    Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Allan Green TG (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  PubMed  Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbiol Ecol 57:229–247. https://doi.org/10.1007/s00248-008-9449-9

    Article  Google Scholar 

  • Cabrol N (2018) The coevoluation of life and environment on Mars: an ecosystem perspective on the robotic exploration of biosignatures. Astrobiology 18(1):1–27. https://doi.org/10.1089/ast.2017.1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrol N, Grin E (1999) Distribution, classification and ages of Martian impact crater lakes. Icarus 142:160–172

    Article  Google Scholar 

  • Cabrol N, Grin E (2001) The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant? Icarus 149:291–328

    Article  CAS  Google Scholar 

  • Cabrol N, Grin E (2003) Overview on the formation of paleolakes and ponds on Mars. Glob Planet Chang 35(3–4):199–219. https://doi.org/10.1016/50921-8181(02)00127-3

    Article  Google Scholar 

  • Cahill T, Gill T, Reid J, Gearhart E, Gillette D (1996) Saltating particles, playa crusts and dust aerosols at Owens (dry) Lake, California. Earth Surf Process Landf 21(7):621–639

    Article  CAS  Google Scholar 

  • Cámara B, Suzuki S, Nealson K, Wierzchos J, Ascaso C, Artieda O, de los Ríos A (2014) Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Int Microbiol 17:235–247. https://doi.org/10.2436/20.1501.01.226

    Article  CAS  PubMed  Google Scholar 

  • Cameron RE, Blank GB (1965) Soil studies-microflora of desert regions. VIII. Distribution and abundance of desert microflora. Space Programs Summary 37–34 4:193–202

    Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25-to 40-million-year-old Dominican amber. Science 268(5213):1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Caruso T, Chan Y, Lacap D, Lau M, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413. https://doi.org/10.1038/ismej.2011.21

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter J, Poulet F, Bibring JP, Mangold N, Murchie S (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J Geophys Res Planets 118:831–858

    Article  CAS  Google Scholar 

  • Cary SC et al (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8(2):129–138

    Article  CAS  PubMed  Google Scholar 

  • Cereceda P, Larrain H, Osses P, Farías M, Egaña I (2008) The climate of the coast and fog zone in the Tarapacá region, Atacama Desert, Chile. Atmos Res 87:301–311

    Google Scholar 

  • Certini G, Ugolini FC (2013) An updated, expanded, universal definition of soil. Geoderma 192:378–379

    Article  Google Scholar 

  • Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS et al (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282. https://doi.org/10.1111/j.1462-2920.2012.02821

    Article  PubMed  Google Scholar 

  • Chapelle F, O’Neill K, Bradley P, Methé B, Clufo S, Knobel L, Lovely D (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Chong G (1984) Die Salare in Nordchile: Geologie, Struktur und Geochimie. Goetekt Forsch 67:1–146

    Google Scholar 

  • Chong G (1988) The Cenozoic saline deposits of the Chilean Andes between18° and 27° south. In: Bahlburg H, Breitkreuz C, Giese P (eds) The southern Central Andes. Springer-Verlag, Heidelberg, pp 135–151

    Google Scholar 

  • Christensen P, Bandfield J, Hamilton V, Ruff S, Kieffer H, Titus T, Malin M, Morris R, Lane M, Clrk R, Jakosky B, Mellon M, Pearl J, Conrath B, Smith M, Clancy R, Kuzmin R, Roush T, Mehall G, Gorelick N, Bender K, Murray K, Dason S, Greene E, Silverman S, Grenfield M (2001) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J Geophys Res 106(E10):28823–23871. https://doi.org/10.1029/2000JE001370.4010.1002

    Article  Google Scholar 

  • Cockell C, Stokes D (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct Antarct Alp Res 38(3):335–342

    Article  Google Scholar 

  • Cockell C, McKay CP, Warren-Rhodes KA, Horneck G (2008) Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts- Dosimetric experiments in the hyperarid core of the Atacama Desert. J Photochem Photobiol 90:79–87

    Article  CAS  Google Scholar 

  • Cockell C, Balme M, Bridges J, Davila A, Schwenzer S (2011) Uninhabited Habitats on Mars. Icarus. https://doi.org/10.1016/j.icarus.2011.10.025

  • Cockell C, Wilhelm MB, Perl S, Wadsworth J, Payler S, Paling S, Edwards T, McMahon S (2020) 0.25 Ga salt deposits preserve geological signatures of habitable conditions and ancient lipids. Astrobiology 20(7):864–877. https://doi.org/10.1089/ast.2019.2053

    Article  CAS  PubMed  Google Scholar 

  • Colwell F, D’Hondt S (2013) Nature and extent of the deep biosphere. Rev Mineral Geochem 75:547–574. https://doi.org/10.2138/rmg.2013.75.17

    Article  CAS  Google Scholar 

  • Cowan D, Casanueva A (2007) Stability of ATP in Antarctic desert soils. Polar Biol 30:1599–1603

    Article  Google Scholar 

  • Cowan D, Russell N, Mamais A, Sheppard D (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Khan N, Pointing S, Cary SC (2010) Diverse hypolithic refuge communities in Antarctic dry valleys. Antarct Sci 22:714–720

    Article  Google Scholar 

  • Cowan DA, Pointing SB, Stevens MI, Cary SC, Stomeo F, Tuffin IM (2011b) Distribution and abiotic influences on hypolithic communities in an Antarctic Dry Valley. Polar Biol 34:307–311

    Article  Google Scholar 

  • Crits-Christoph A, Robinson C, Barnum T, Fricke F, Davila A, Jedynak B, McKay C, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28. https://doi.org/10.1186/2049-2618-1-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Davila A, Schulze-Makuch D (2016) The last possible outposts for life on Mars. Astrobiology 16:159–168

    Article  PubMed  Google Scholar 

  • Davila AF, Gómez-Silva B, de los Rios A (2008a) Facilitation of endolithic microbial survival in the Hyperarid Core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:G01028

    Google Scholar 

  • Davila A, Gómez-Silva B, de los Ríos A, Ascaso C, Olivares H, McKay C, Wierzchos J (2008b) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:G01028. https://doi.org/10.1029/2007JG000561

    Article  Google Scholar 

  • Davila AF, Duport L, Melchiorri R, Jänchen J, Valea S, de los Rios A, Fairén A, Möhlmann D, McKay C, Ascaso C, Wierzchos J (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10:617–628

    Article  CAS  PubMed  Google Scholar 

  • Davila A, Hawes I, Ascaso C, Wierzchos J (2013) Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert. Environ Microbiol Rep 5:583–587. https://doi.org/10.1111/1758-2229.12050

    Article  CAS  PubMed  Google Scholar 

  • Davila A, Kahre M, Quinn R, Des Marais D (2019) The biological potential of present day Mars. In: Meadows V et al (eds) Planetary astrobiology. Univ. of Arizona, Tucson

    Google Scholar 

  • Davis W, de Pater I, McKay CP (2010) Rain infiltration and crust formation in the extreme environment arid zone of the Atacama Desert. Chile Planet Space Sci 58(4):616–622

    Article  CAS  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho L, Green T, Ascaso C (2005) Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist 37:383

    Article  Google Scholar 

  • de los Ríos A, Valea S, Ascaso C, Davila A, Kastovsky J, CP MK, Gómez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89. https://doi.org/10.2436/20.1501.01.113

    Article  CAS  Google Scholar 

  • de los Ríos A, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo dry valleys. Antarct Sci 26:459–477

    Article  Google Scholar 

  • Demergasso C, Casamayor E, Chong G, Galleguillos P, Escudero L, Pedros-Alio C (2004) Distribution of prokaryotic genetic diversity in athalssohaline lakes of the Atacama Desert, northern Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  • Demergasso C, Dorador C, Menese D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J Geophys Res Biogeosci 115:G2

    Article  Google Scholar 

  • Di Achille G, Hynek BM (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat Geosci 3(7):459–463

    Article  CAS  Google Scholar 

  • DiRuggiero J, Wierzchos J, Robinson C, Souterre T, Ravel J, Artieda O (2013) Microbial colonization of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10:1171–1179. https://doi.org/10.1038/s41396-018-0049-5

    Article  CAS  Google Scholar 

  • Dohm J, Miyamoto H, Ori G, Fairén A, Davilia A, Komatsu G, Mahaney W, Illiams J, Joye S, Achille G, Oehler D, Marzo G, Schluze-Makuch D, Acocella V, Glmoclija M, Pondrelli M, Boston P, Hart K, Anderson R, Baker V, Fink W, Kelleher B, Furfaro R, Gross C, Hare T, Frazer A, Ip E, Allen C, Kim K, Muruyama S, McGuire P, Netoff D, Parnell J, Wendt I, Wheelock S, Steele A, Hancock R, Havics R, Costa P, Krinsely D (2011) An inventory of potentially hapitable environments on Mars: geological and biological perspectives. Geol Soc Am Spec Pap 483:317–347

    Google Scholar 

  • Dong H, Rech J, Jiang H, Sun H, Buck B (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States) and Al-Jafr Basin (Jordan) deserts. JGR Biogeosci 112:G2. https://doi.org/10.1029/2006JG000385

    Article  CAS  Google Scholar 

  • Dorador C, Vila I, Remonsellez F, Imhoff JF, Witzel KP (2010) Unique clusters of Archaea in Salar de Huasco, an athalassohaline evaporitic basin of the Chilean Altiplano. FEMS Microbiol Ecol 73(2):291–302

    CAS  PubMed  Google Scholar 

  • Droste J (1961) Clay mineral composition of sediments in some desert lakes in Nevada, California, and Oregon. Science 133:1928

    Article  CAS  PubMed  Google Scholar 

  • Ehlmann B, Mustard J, Murchie S, Bibring JP, Meunier A, Fraeman A, Langevin Y (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M, Navarro-González R, Sutter B, McAdam AC, Franz HB, Glavin DP, Archer PD, Mahaffy PR, Conrad PG, Hurowitz JA, Grotzinger JP, Gupta S, Ming DW, Sumner DY, Szopa C et al (2018) Organic matter preserved in 3-billion-year-old mudstones at Gale crater. Science, Mars. https://doi.org/10.1126/science.aas9185

    Book  Google Scholar 

  • Ekwealor J, Fisher K (2020) Life under quartz: Hypolithic mosses in the Mojave Desert. PLoS One 15(7):e0235928. https://doi.org/10.1371/journal.pone.0235928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae M, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Austr J Bot 44:581–599

    Article  Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415. https://doi.org/10.1071/SR9940389

    Article  Google Scholar 

  • Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:1010–1114

    Article  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336. https://doi.org/10.1016/S0341-8162(00)00082-5

    Article  Google Scholar 

  • El-Maarry M, Pommerol A, Thomas N (2013) Analysis of polygonal cracking patterns in chloride-bearing terrains on Mars: indicators of ancient playa settings. JGR Planets 118:2263–2278. https://doi.org/10.1002/2013JE004463

    Article  CAS  Google Scholar 

  • Ericksen G, Salas R (1990) Geology and resources of salars in the Central Andes. In: Ericksen GE, Cañas MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources, Earth science series, vol 11. Circum-Pacific Council for Energy and Mineral Resources, Houston, Texas, pp 165–172

    Google Scholar 

  • Escudero L, Bijman J, Mariela G, Pueyo Mur J, Chong G, Demergasso C (2015) Organotrophic and mixotrophic sulfur oxidation in an acidic salt flat in northern chile. Adv Mater 1130:63–66. https://doi.org/10.4028/www.scientific.net/amr.1130.63

    Article  Google Scholar 

  • Espisito A, Ahmed E, Ciccazzo S, Sikorski J, Overmann J, Holmström S, Brusetti L (2015) Comparison of rock varnish bacterial communities with surrounding non-varnished rock surfaces: taxon-specific analysis and morphological description. Microbial Ecology 70:741–750. https://doi.org/10.1007/s00248-015-0617-4

    Article  Google Scholar 

  • Ettema C, Wardle D (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183. https://doi.org/10.1016/S0169-5347(02)02496-5

    Article  Google Scholar 

  • Ewing S, Sutter B, Owen J, Nishizumi K, Sharp W, Cliff S, Perry K, Dietrich B, McKay C, Amundson R (2006) A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim Cosmochim Acta 70(21):5293–5322. https://doi.org/10.1016/j.gca.2006.08.020

    Article  CAS  Google Scholar 

  • Ewing S, Southard R, Macalady J, Hartshorn A, Johnson M (2007) Soil microbial fingerprints, carbon and nitrogen in a Mojave Desert creosote-bush ecosystem. Soil Sci Soc Am J 71(2):469–475

    Article  CAS  Google Scholar 

  • Ewing S, Macalady J, Warren-Rhodes K, McKay C, Amundson R (2008) Changes in the soil C cycle at the arid-hyperarid transition in the Atacama Desert. J Geophys Res 113(G2):G02S90. https://doi.org/10.1029/2007JG000495

    Article  CAS  Google Scholar 

  • Fairén A, Parro V, Schulze-Makuch D, Whyte L (2018) Is searching for Martian life a priority for the Mars community? Astrobiol 18(2):101–107. https://doi.org/10.1089/ast.2017.1772

    Article  Google Scholar 

  • Farias ME, Rascovan N, Toneatti DM, Albarracin VH, Flores MR, Poire DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8(1):e53497. https://doi.org/10.1371/journal.pone.0053497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias ME, Contreras M, Rasuk M, Kurth D, Flores M, Poiré D, Novoa F, Visscher P (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18:311–329. https://doi.org/10.1007/s00792-013-0617-6

    Article  CAS  PubMed  Google Scholar 

  • Farmer J (2018) Habitability as a tool in astrobiological explortion. In: From habitability to life on Mars. Elsevier Press, Cambridge, pp 1–12. https://doi.org/10.1016/B978-0-12-809935-3.00002-5

    Chapter  Google Scholar 

  • Fassett CI, Head JW III (2007) Layered mantling deposits in northeast Arabia Terra, Mars: Noachian-Hesperian sedimentation, erosion, and terrain inversion. J Geophys Res Planets 112(E8)

    Google Scholar 

  • Fassett C, Dickson J, Head J, Levy J, Marchant D (2010) Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208(1):86–100. https://doi.org/10.1016/j.icarus.2010.0.021

    Article  Google Scholar 

  • Fernández-Martínez MA, Severino R, Moreno-Paz M, Gallardo-Carreño I, Blanco Y, Warren-Rhodes K, García-Villadangos M, Ruiz-Bermejo M, Barberán A, Wettergreen D, Cabrol N, Parro V (2019) Prokaryotic community structure and metabolisms in shallow subsurface of Atacama Desert playas and alluvial fans after heavy rains: repairing and preparing for next dry period. Front Microbiol 10:1641. https://doi.org/10.3389/fmicb.2019.01641

    Article  PubMed  PubMed Central  Google Scholar 

  • Finstad K, Pfeiffer M, Amundson R (2014) Hyperarid soils and the soil taxonomy. Soil Sci Soc America J 78(6):1845. https://doi.org/10.2136/sssaj2014.06.0247

    Article  CAS  Google Scholar 

  • Finstad K, Pfeiffer M, McNicol G, Barnes J, Demergasso C, Chong G, Amundson R (2016) Rates and geochemical processes of soil and salt crust formation in Salars of the Atacama Desert, Chile. Geoderma 284:57–72

    Article  CAS  Google Scholar 

  • Finstad K, Probst A, Thomas B, Anderson G, Demergasso C, Echeverria A, Amundson R, Banfield J (2017) Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid atacama desert from genome-resolved metagenomics. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01435

  • Fisher DA, Hecht MH, Kounaves SP, Catling DC (2010) A perchlorate brine lubricated deformable bed facilitating flow of the north polar cap of Mars: possible mechanism for water table recharging. J Geophys Res Planets 115(E2)

    Google Scholar 

  • Fisk M, Giovannoni S (1999) Sources of nutrients and energy for a deep biosphere on Mars. JGR 104(E5):11805–11815

    Article  CAS  Google Scholar 

  • Forsythe RD, Blackwelder CR (1998) Noachian Martian salars (closed drainage salt pans) and sabkhas as lander/sample return mission target. In: Mars Surveyor 2001 Landing Site Workshop, pp 76–77

    Google Scholar 

  • Franz H, Mahaffy P, Webster C, Flesch G, Raaen E, Freissinet C, Atreya S, House C, McAdam A, Knudson C, Archer P, Stern J, Steele A, Sutter B, Eigenbrode J, Glavin D, Lewis J, Malespin C, Millan M, Ming D, Navarro-González R, Summons R (2020) Indigenous and exogenous organics and surface-atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater. Nature Astronomy 4:526–532. https://doi.org/10.1038/s41550-019-0990-x

    Article  Google Scholar 

  • Freissinet C, Glavin D, Mahaffy P, Miller K, Eigenbrode J, Summons R, Brunner A, Buch A, Szopa C, Archer P, Franz H, Atreya S, Brinkerhoff W, Cabane M, Coll P, Conrad P, Des Marais D, Dworkin J, Fairén A, Francois P, Grotzinger J, Kashyap S, ten Kate I, Leshin L, Malespin C, Martin M, Martin-Torres F, McAam A, Ming D, Navarro-González R, Pavlov A, Prats B, Squyres S, Steele A, Stern J, Sumner D, Sutter B, Zorzano M, MSL Science Team (2015) Organic molecules in the Sheepbed Mudstone, Gale Crater. Mars JGR 120(3):495–514. https://doi.org/10.1002/2014JE004737

    Article  CAS  Google Scholar 

  • Friedmann I (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10:223–235. https://doi.org/10.1007/bf00928400

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the antarctic cold desert. Science 215(4536):1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Galun M (1974) Desert algae, lichens and fungi. In: Brown G (ed) Desert Biology. Academic Press, New York, pp 166–204

    Google Scholar 

  • Friedmann EI, McKay CP (1985) A method for continuous monitoring of snow: application to the cryptoendolithic microbial community of Antarctica. Antarct J US 20:179–181

    Google Scholar 

  • Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200. https://doi.org/10.2216/i0031-8884-6-4-185.1

    Article  Google Scholar 

  • Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7(5):273–287

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Garcia-Pichel F, Belnap J (2003) Small-scale environments and distribution of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 2. Springer, Berlin, pp 193–202

    Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka R (2014) Temperature drives the continental-scale distribution of microbes in topsoil communities. Science 340(6140):1574–1577. https://doi.org/10.1126/science.1236404

    Article  CAS  Google Scholar 

  • Garrido-Benavent I, Pérez-Ortega S, Durán, Ascaso C, Pointing S, Rodriguez-Cielos R, Navarro F, de los Ríos A (2020) Differential colonization and succession of microbial communities in rock and soil substrates on a maritime Antarctic glacier forefield. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00126

  • Glotch TD, Bandfield JL, Wolff MJ, Arnold JA, Che C (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J Geophys Res: Planets 121(3):454–471. https://doi.org/10.1002/2015JE004921

    Article  CAS  Google Scholar 

  • Goldstein H, Breit G, Reynolds R (2017) Controls on the chemical composition of saline surface crusts and emitted dust from a wet playa in the Mojave Desert (USA). J Arid Environ 140:50–66. https://doi.org/10.1016/j.jaridenv.2017.01.010

    Article  Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Gómez-Silva B (2018) Lithobiontic life: “Atacama rocks are well and alive”. Antonie van Leeuwenhoek. J Microbiol 102(1). https://doi.org/10.1007/s10482-018-1033-9

  • Goordial J, Davila A, Lacelle D, Lacelle D, Pollard W, Marinova M, Greer C, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624. https://doi.org/10.1038/ismej.2015.239

    Article  PubMed  PubMed Central  Google Scholar 

  • Goordial J, Davila A, Greer C, Cannam R, DiRuggerio J, McKay CP, Whyte LG (2017) Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ Microbiol 19:443–458. https://doi.org/10.1111/1462-2920.13353

    Article  CAS  PubMed  Google Scholar 

  • Goudge T, Mustard J, Head J, Fassett C, Wiseman S (2015) Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars. JGR Planets 120:775–808. https://doi.org/10.1002/2014JE004782

    Article  CAS  Google Scholar 

  • Gramain A, Díaz GC, Demergasso C, Lowestein T, McGenity T (2011) Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121

    Article  PubMed  Google Scholar 

  • Grant JA, Parker TJ (2002) Drainage evolution in the Margaritifer Sinus region, Mars. J Geophys Res Planets 107:4–1. https://doi.org/10.1029/2001JE001678

    Article  Google Scholar 

  • Griffin D (2004) Dust storms and their impact on ocean and human health: dust in Earth’s Atmosphere. EcoHealth 1:284–295. https://doi.org/10.1007/s10393-004-0120-8

    Article  Google Scholar 

  • Grotzinger J, Sumner D, Kah L, Gupta S, Edgar L, Rubin D, Lewis K, Shiebr J, Mangold N, Milliken R, Conrad P, Des Marais D, Farmer J, Siebach K, Calef F, Hurowtiz J, McLennan S, Ming D, Vaniman D, Crisp J, Vasavada A, Edgett K, Malin M, Blake D, Gellert R, Mahaffy P, Wiens R, Maurie S, Grant J, Wilson S, Anderson R, Beegle L, Arvidson R, Hallet B, Sletten R, Rice M, Bell J III, Griffes J, Ehlmann B, Anderson R, Bristow T, Dietrich W, Dromart G, Eigenbrode J, Fraeman A, Hardgrove C, Herkenhoff K, Jandura L, Kocurek G, Lee S, Leshin L, Leveille R, Limonadi D, Maki J, McCloskey S, Meyer M, Minitti M, Newson H, Oehler D, Okon A, Palucis M, Parker T, Rowland S, Schmidt M, Squyres S, Steele A, Stolper E, Summons R, Treiman A, Williams R, Yingst A, MSL Science Team (2014) A habitable fluvio-lacustrine environment at yellowknife bay, gale crater, Mars. Science 343:6169. https://doi.org/10.1126/science.1242777

    Article  CAS  Google Scholar 

  • Grotzinger J, Gupta S, Malin M, Rubin D, Schieber J, Siebach K, Sumner D, Stack K, Vasavada A, Arvidson R, Calef F, Edgar L, Fischer W, Grant J, Griffes J, Kah L, Lamb M, Lewis K, Mangold N, Minitti M, Palusis M, Rice M, Williams R, Yingst R, Blake D, Blaney D, Conrad P, Crisp J, Dietrich W, Dromart G, Edgett K, Ewing R, Gellert R, Hurowitz J, Kocurek G, Mahaffy P, McBride M, McLennan S, Mischna M, Ming D, Milliken R, Newsom H, Oehler D, Parker T, Vaniman D, Wiesn R, Wilson S (2015) Deposition, exhumation and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350:6257. https://doi.org/10.1126/science.aac7575

    Article  CAS  Google Scholar 

  • Gutiérrez M (2005) Desert lakes: playa lakes and sebkhas. Clim Geomorphol:383–405

    Google Scholar 

  • Guzman M, McKay CP, Quinn RC, Szopa C, Davila AF, Navarro-González R, Freissinet C (2018) Identification of chlorobenzene in the viking gas chromatograph-mass spectrometer data sets: reanalysis of viking mission data consistent with aromatic organic compounds on Mars. J Geophys Res: Planets. https://doi.org/10.1029/2018JE005544

  • Hang C, Nadeau DF, Jensen DD, Hoch SW, Pardyjak E (2015) Playa soil moisture and evaporation dynamics during the MATERHORN field program. Bound.-Layer Meteorol 159:521–538. https://doi.org/10.1007/s10546-015-0058-0

    Article  Google Scholar 

  • Harrison TN, Osinski GR, Tornabene LL, Jones E (2015) Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252:236–254

    Article  CAS  Google Scholar 

  • Hauber E, Platz T, Reiss D, Le Deit L, Kleinhans MG, Marra WA, de Haas T, Carbonneau P (2013) Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate. J Geophys Res Planets 118(7):1529–1544

    Article  CAS  Google Scholar 

  • Hays L, Archenbach L, Bailey J, Barnes R, Barros J, Bertka C, Boston P, Boyd E, Cable M, Chen I (2015) NASA astrobiology strategy. NASA, Washington, DC

    Google Scholar 

  • Hays L, Graham H, Des Marais D, Hausrath E, Horgon B, McCollom T, Parenteau M, Potter-McIntyre S, Williams A, Lynch K (2017) Biosignature preservation and detection in Mars analog environments. Astrobiology 17:363–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Hecht M, Kounaves S, Quinn R, West S, Youg M, Ming D, Catling D, Clark B, Boynton W, Hoffman J, DeFlores L, Gospodinova K, Kapit J, Smith P (2009) Detection of perchlorate and the soluble chemistry of martian soil at the phoenix lander site. Science 325:64–67. https://doi.org/10.1126/science.1172466

    Article  CAS  PubMed  Google Scholar 

  • Heet T, Arvidson R, Cull S, Mellon M, Seelos K (2009) Geomorphic and geologic settings of the Phoenix Lander mission landing site. JGR 114:E00E04. https://doi.org/10.1029/2009JE003416

    Article  Google Scholar 

  • Herrera A, Cockell C, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle A (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9(4):369–381. https://doi.org/10.1089/ast.2008.0278

    Article  CAS  PubMed  Google Scholar 

  • Horgan B, Anderson R, Dromart G, Amador E, Rice M (2019) The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.113526

  • Hugenholtz P, Boebel B, Pace N (1998) MiniReview: impact of culture-independent studies on the emergingn phylogenetic view of bacterial diversity. J Bacteriol 180(18):4764–4775

    Article  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5(7):555–565

    Article  PubMed  Google Scholar 

  • Hurowitz JA et al (2017) Redox stratification of an ancient lake in Gale crater, Mars. Science 356(6341):6849. https://doi.org/10.1126/science.aah6849

    Article  CAS  Google Scholar 

  • Hynek BM, Beach M, Hoke MR (2010) Updated global map of Martian valley networks and implications for climate and hydrologic processes. J Geophys Res Planets 115(E9)

    Google Scholar 

  • Idris H, Goodfellow M, Sanderson R, Asenjo J, Bull A (2017) Actionbacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama. Sci Rep 7:8373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imhoff J, Sahl H, Soliman G, Trüper H (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology 1(3):219–234

    Article  CAS  Google Scholar 

  • Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P (2019) Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. J Phycol 55:1306–1318. https://doi.org/10.1111/jpy.12908

    Article  CAS  PubMed  Google Scholar 

  • Kaseke K (2009) Non-rainfall Atmospheric Water in Arid Soil Microhydrology and Ecology, MSc thesis, Univ. of Stellenbosch, Stellenbosch, South Africa

    Google Scholar 

  • Kaseke K, Mills A, Henschel J, Seely M, Brown R (2012) The effects of desert pavments on soil microhydrology. Pure Appl Geophys 169:873–880

    Article  Google Scholar 

  • Khan N, Tuffin M, Stafford W, Cary C, Lacap D, Pointing S, Cowan D (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668

    Article  Google Scholar 

  • Kidron GJ (2005) Angle and aspect dependent dew precipitation in the Negev Desert, Israel. J Hydrol 301:66–74

    Article  Google Scholar 

  • Kidron GJ (2007) Millimeter-scale microrelief affecting runoff yield over microbiotic crusts within a dune ecosystem in the Negev Desert. Catena 70:266–273. https://doi.org/10.1016/j.catena.2006.08.010

    Article  Google Scholar 

  • Kidron GJ, Herrnstadtw I, Barzilay E, Campus R (2002) The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J Arid Environ 52(4):517–533

    Article  Google Scholar 

  • Kidron GJ, Vonshak A, Dor I, Barinova S, Abeliovich A (2010) Properties and spatial. distribution of microbiotic crusts in the Negev Desert. Catena 82:92–101

    Article  CAS  Google Scholar 

  • Kidron GJ, Temina M, Starinsky A (2011) An investigation of the role of water (rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert. Geomicrobiol J 28:335–346

    Article  Google Scholar 

  • Kidron GJ, Barinova S, Vonshak A (2012) The effects of heavy winter rains and rare summer rains on biological soil crusts in the Negev Desert. Catena 95:6–11. https://doi.org/10.1016/j.catena.2012.02.021

    Article  Google Scholar 

  • Kidron GJ, Starinksky A, Yaalon D (2014) Cyanobacteria are confined to dewless habitats within a dew desert: implications for past and future climate change for lithic microorganisms. J Hydrol 519:3606–3614

    Article  CAS  Google Scholar 

  • Klein HP (1979) The Viking mission and the search for life on Mars. Rev Geophys 17(7):1655. https://doi.org/10.1029/RG017i007p01655

    Article  Google Scholar 

  • Kuhlman K, Venkat P, La Duc M, Kuhlman G, Mckay C (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. J Geophys Res 113:G04022. https://doi.org/10.1029/2007JG000677

    Article  CAS  Google Scholar 

  • Lacap D, Warren-Rhodes K, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38. https://doi.org/10.1007/s00792-010-0334-3

    Article  PubMed  Google Scholar 

  • Lacap-Bugler DC, Lee KK, Archer S, Gillman LN, Lau MCY, Leuzinger S et al (2017) Global diversity of desert hypolithic cyanobacteria. Front Microbiol 8:867. https://doi.org/10.3389/fmicb.2017.00867

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalley J, Viles H (2005) Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition. The Lichenologist 37(1):77–91. https://doi.org/10.1017/S0024282904014203

    Article  Google Scholar 

  • Lalley J, Viles H, Copeman N, Cowley C (2006) The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. J Veg Sci 17:831–838

    Article  Google Scholar 

  • Lee K, Barbier B, Bottos E, McDonald I, Cary SC (2012) The inter-valley soil comparative survey: the ecology of Dry Valley edaphic communities. ISME J 6:1046–1057. https://doi.org/10.1038/ismej.2011.170

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Caruso T, Archer S, Gillman L, Lau M, Cary SC, Lee C, Pointing SB (2018) Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo Dry Valleys of Antarctica. Frontiers Microbiol 9:2619. https://doi.org/10.3389/fmicb.2018.02619

    Article  Google Scholar 

  • Lefort A, Russell P, Thomas N, McEwen A, Dundas C, Kirk R (2009) Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). J Phys Res 114:E040005. https://doi.org/10.1029/2008JE003264

    Article  Google Scholar 

  • Lehnert L, Thies B, Trachte K, Achilles S, Osses P, Baumann K, Schmidt J, Samolov E, Jung P, Leinweber P, Karsten U, Büdel B, Bendix J (2018) A case study on fog/low stratus occurrence at Las Lomitas, Atacama Desert (Chile) as a water source for biological soil crusts. Aerosol Air Quality Res 18:254–269. https://doi.org/10.4209/aaqr.2017.01.0021

    Article  Google Scholar 

  • Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, Archer PD Jr, Atreya SK, Brunner AE, Buch A, Eigenbrode JL (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341(6153):1238937

    Article  CAS  PubMed  Google Scholar 

  • Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid atacama desert soils. Soil Biol Biochem 39(2):704–708

    Article  CAS  Google Scholar 

  • Levin G, Straat P (1976) Viking labeled release biology experiment: interim results. Science 194:1322–1329

    Article  CAS  PubMed  Google Scholar 

  • Levy J, Head J, Marchant D (2008) The role of thermal contraction crack polygons in cold-desert fluvial systems. Antarctic Science 20(6):565–579. https://doi.org/10.1017/S0954102008001375

    Article  Google Scholar 

  • Lousada M, Pina P, Vierira G, Bandeira L, Mora C (2018) Evaluation of the use of very high resolution aerial imagery for accurate ice-wedg polygon mapping (Adventdalen, Svalbard). Sci Total Environ 615:1574–1583. https://doi.org/10.1016/j.scitotenv.2017.09.153

    Article  CAS  PubMed  Google Scholar 

  • Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK (2014) Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front Microbiol 5:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahowald N, Bryant R, Corral J, Steinberger L (2003) Ephemeral lakes and desert dust sources. Geophys Res Lett 30(2):1074. https://doi.org/10.1029/2002GL016041

    Article  Google Scholar 

  • Malin MC, Edgett KS (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302(5652):1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224. https://doi.org/10.1111/1758-2229.12003

    Article  PubMed  Google Scholar 

  • Makhalanyane T, Valverde A, Gunnigle E, Frossard A, Raymond JB, Cowan D (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. https://doi.org/10.1093/femsre/fuu011

    Article  CAS  PubMed  Google Scholar 

  • Maloof A, Kellogg J, Anders A (2002) Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth. Earth Planetary Sci Letters 204:1–15

    Article  CAS  Google Scholar 

  • Mangold N, Poulet F, Mustard JF, Bibring JP, Gondet B, Langevin Y, Ansan V, Masson P, Fassett C, Head JW III, Hoffmann H (2007) Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J Geophys Res Planets 112(E8)

    Google Scholar 

  • McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L, Wray JJ, Chojnacki M, Byrne S, Murchie SL, Thomas N (2014) Recurring slope lineae in equatorial regions of Mars. Nat Geosci 7(1):53–58

    Article  CAS  Google Scholar 

  • McKay CP (2016) Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity. Glob Ecol Conserv 6:145–151. https://doi.org/10.1016/S0012-821X(02)00960-3

    Article  Google Scholar 

  • McKay CP (2020) What is life—and when do we search for it on other worlds. Astrobiology 20(2):163–166. https://doi.org/10.1089/ast.2019.2136

    Article  PubMed  Google Scholar 

  • McKay CP, Nienow J, Meyer M, Friedmann EI (1993) Continuous nanoclimate data (1985–1988) from the Ross Desert (McMurdo Dry Valley) cryptoendolithic microbial ecosystem. In: Antarctic Meteorology and Climatology: Studies Based on Automatic Weather Stations. American Geophysical Union 61:201–207

    Google Scholar 

  • McKay C, Mellon M, Friedmann E (1998) Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarct Sci 10:31–38

    Article  CAS  PubMed  Google Scholar 

  • McKay C, Balaban E, Abrahams S, Lewis N (2019) Dry permafrost soil over ice-cemented ground at Elephant Head, Ellsworth Land, Antarctica. Antarct Sci 31(5):263–270

    Article  Google Scholar 

  • McKenna OP, Sala OE (2018) Groundwater recharge in desert playas: current rates and future effects of climate change. Environ Res Lett 13:014025. https://doi.org/10.1088/1748-9326/aa9eb6

    Article  Google Scholar 

  • McSween H (2015) Petrology on Mars. American Mineralogist 100(11–12):2380–2395. https://doi.org/10.2138/am-2015-5257

    Article  Google Scholar 

  • McSween H, Grove T, Wyatt M (2003) Constraints on the composition and petrogenesis of the Martian crust. JGR Planets 108:E12. https://doi.org/10.1029/2003JE002175

    Article  CAS  Google Scholar 

  • McSween H, Taylor G, Wyatt M (2009) Elemental composition of the Martian crust. Science 324:736. https://doi.org/10.1126/science.1165870

    Article  CAS  PubMed  Google Scholar 

  • Mellon M, Malin M, Arvidson R, Searls M, Sizemore H, Heet T, Lemmon M, Keller HU, Marshall J (2009a) The periglacial landscape at the Phoenix landing site. JGR 114:E00E06. https://doi.org/10.1029/2009JE003418

    Article  Google Scholar 

  • Mellon M, Arvidson R, Sizemore H, Searls M, Blaney D, Cull S, Hecht M, Heet T, Keller HU, Lemmon M, Markiewicz W, Ming D, Morris R, Pike T, Zent A (2009b) Ground ice at the Phoenix landing site: Stability state and origin. JGR 114:E00E07. https://doi.org/10.1029/2009JE003417

    Article  CAS  Google Scholar 

  • Meslier V, DiRuggiero J (2019) Endolithic microbial communities as model systems for ecology and astrobiology. In: Seckbach J, Rampelotto PH (eds) Model ecosystems in extreme environments. Elsevier, pp 145–168

    Chapter  Google Scholar 

  • Meslier V et al (2018) Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 20(5):1765–1781

    Article  PubMed  Google Scholar 

  • Michalski J, Dobrea E, Niles P, Cuadros J (2017) Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nature Commun 8:15978. https://doi.org/10.1038/ncomms15978

    Article  CAS  Google Scholar 

  • Mogul R, Vaishampayan P, Bashir M, McKay CP, Schubert K, Bornaccorsi R, Gomez E, Tharayil S, Payton G, Capra J, Andaya J, Bacon L, Bargoma E, Black D, Boos K, Brant M, Chabot M, Chau D, Cisneros J, Chu G, Curnutt J, DiMizio J, Engelbrecht C, Gott C, Harnoto R, Hovanesian R, Johnson S, Lavergne B, Martinez G, Mans P, Morales E, Oei A, Peplow G, Piaget R, Ponce N, Renteria E, Rodriguez V, Rodriguez J, Santander M, Sarmiento K, Scheppelmann A, Schroter G, Sexton D, Stephenson J, Symer K, Russo-Tait T, Weigel B, Wilhelm MB (2017) Microbial community and biochemical dynamics of biological soil crusts across a gradient of surface coverage in the Central Mojave Desert. Front Microbiol 8:1974. https://doi.org/10.3389/fmicb.2017.01974

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondro CA, Fedo CM, Moersch JE (2019) Identification and morphologic characterization of small and medium alluvial fans on mars using the ctx global mosaic [2739]: lunar and planetary science conference. https://www.hou.usra.edu/meetings/lpsc2019/pdf/2739.pdf

  • Moore H, Jakosky B (1989) Viking landing sites, remote-sensing observations and physical properties of Martian surface materials. Icarus 81(1):164–184. https://doi.org/10.1016/0019-1035(89)90132-2

    Article  Google Scholar 

  • Moore H, Hutton R, Clow G, Spitzer C (1987) Physical properties of the surface materials at the Viking landing sites. US Geological Survey Professional Paper 1389. US Government Printing Office, Washington DC

    Google Scholar 

  • Murchie S, Mustard J, Ehlmann B, Milliken R, Bishop J, McKeown N, Dobrea E, Seeelos F, Buczkowski D, Wiseman S, Arvidson R, Wray J, Swayze G, Clark R, Des Marais D, McEwen A, Bibring JP (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaisssance Orbiter. JGR Planets 114:E2. https://doi.org/10.1029/2009JE003342

    Article  CAS  Google Scholar 

  • Murray AE, Kenig F, Fritsen CH, McKay CP, Cawley KM, Edwards R, Kuhn E, McKnight DM, Ostrom NE, Peng V, Ponce A, Priscu JC, Samarkin V, Townsend AT, Wagh P, Young SA, Yung PT, Doran PT (2012) Microbial life at −13 C in the brine of an ice-sealed Antarctic lake. Proc Nat Acad Sci 109(50):20,626–20,631. https://doi.org/10.1073/pnas.1208607109

    Article  Google Scholar 

  • Mustard JF, Murchie SL, Pelkey SM, Ehlmann B, Milliken R, Grant J, Bibring J, Poulet F, Bishop J, Dobrea E, Roach L, Seelos F, Arvidson R, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern J, Seelos K, Clancy T, Clark R, Des Marais D, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on mars observed by the mars reconnaissance orbiter CRISM instrument. Nature 454:305–309

    Article  CAS  PubMed  Google Scholar 

  • Mutch T (1976) The surface of mars: the view from the viking 2 lander’. Science 194(4271):1277–1283

    Article  CAS  PubMed  Google Scholar 

  • Mutch TA, Arvidson RE, Guinness EA, Binder AB, Morris EC (1977) The geology of the Viking Lander 2 site. J Geophys Res 82:4452–4467. https://doi.org/10.1029/JS082i028p04452

    Article  Google Scholar 

  • Nash T, Nebecker G, Moser T, Reeves T (1979) Lichen vegetation gradients in relation to the Pacific coast of Baja California: the maritime influence. Madroño 26:149–163

    Google Scholar 

  • Navarro JB, Moser DP, Flores A, Ross C, Rosen MR, Dong H et al (2009) Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake. Microb Ecol 57:307–320. https://doi.org/10.1007/s00248-008-9426-3

    Article  PubMed  Google Scholar 

  • Navarro-Gonzalez R, Rainey F, Molina P, Bagaley D, Hollen B, de la Rosa J, Small A, Quinn R, Grunthaner F, Cáceres L, Gomez-Sílva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile and the dry limit of microbial life. Science 302(5647):1018–1021

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gonzalez R, Vargas E, de la Rosa H, Raga A, McKay CP (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. JGR Planets 115:E12010. https://doi.org/10.1029/2010JE003599

    Article  Google Scholar 

  • Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL et al (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems 2:e00195–e00116. https://doi.org/10.1128/mSystems.00195-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niederberger T, Sohm J, Gunderson T, Parker A, Tirindelli J, Capone D, Carpenter E, Cary SC (2015) Microbial community composition of transiently wetted Antarctic Dry Valley soils. Front Microbiol 6:9. https://doi.org/10.3389/fmicb.2015.00009

    Article  PubMed  PubMed Central  Google Scholar 

  • Nienow J (2019) Extremophiles: dry environments (including Cryptoendoliths). In: Schmidt T (ed) Encyclopedia of microbiology, 4th edn. Elsevier, Oxford, pp 239–262

    Google Scholar 

  • Nienow J, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbiol Ecol 16:271–289. https://doi.org/10.1007/BF02011700

    Article  Google Scholar 

  • Noell A, Fisher A, Fors-Francis K, Sherritt S (2018) Subcritical water extraction of amino acids from Mars analog soils. Electrophoresis 39:2854–3863

    Article  CAS  PubMed  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein W (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  • Nowicki SA, Christensen PR (2007) Rock abundance on Mars from the thermal emission spectrometer. J Geophys Res Planets 112:E5

    Article  Google Scholar 

  • Ojha L, McEwen A, Dundas C, Byrne S, Mattson S, Wray J, Masse M, Schaefer E (2014) HiRISE observations of recurring slope lineae (RSL) during southern summer on Mars. Icarus 231:365–376

    Article  CAS  Google Scholar 

  • Olsson-Francis K, Simpson A, Wolff-Boenisch D, Cockell C (2012) The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology 10:434–444. https://doi.org/10.1111/j.1472-4669.2012.00333

    Article  CAS  PubMed  Google Scholar 

  • Olsson-Francis R, Onofri K, Ott S, Pacelli S, Podolich C, Rabbow O, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho L, Shulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolteer D, Zucconi L (2019) Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS. Astrobiology 19(2):145–157. https://doi.org/10.1089/ast.2018.1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omelon C (2008) Endolithic microbial communities in polar desert habitats. Geomicrobiol J 25(7–8):404–414. https://doi.org/10.1080/01490450802403057

    Article  Google Scholar 

  • Omelon C (2016) Endolithic microorganisms and their habitats. In: Hurst C (ed) Their world: a diversity of microbial environments. Advances in environmental microbiology, vol 1. Springer, Cham, pp 171–201

    Chapter  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29. https://doi.org/10.1007/s00300-006-0155-0

    Article  Google Scholar 

  • Oren A (2002a) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39(1):1–7. https://doi.org/10.1111/j.1574-6941.2002.tb00900.x

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28(1):56–63. https://doi.org/10.1038/sj/jim/7000176

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2013) Life at high salt concentrations, intracellular KCl concentrations and acidic proteomes. Front Microbiol 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Ori GG, Marinangeli L, Baliva A (2000) Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). J Geophys Res Planets 105(E7):17629–17641

    Article  Google Scholar 

  • Osterloo MM et al (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319(5870):1651–1654

    Article  CAS  PubMed  Google Scholar 

  • Osterloo MM et al (2010) Geologic context of proposed chloride-bearing materials on Mars. J Geophys Res 115(E10):1–29

    Google Scholar 

  • Palzelt J, Hodac L, Friedl T (2014) Biodversity of soil cyanobacteria in the hyper-arid Atacama Desert. J Phycol 50(4):698–710

    Article  CAS  Google Scholar 

  • Parro V, Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gill P, Rodríguez-Manfredi J, Fernández-Remolar D, Gómez F, Gómez M, Rivas L, Demergasso C, Echeverría A, Urtuvia V, Ruiz-Bermejo M, García-Villadangos M, Postigo M, Sánchez-Román M, Chong-Díaz GC, Gómez-Elvira J (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by the Life Detector Chip: Implications for the search for life on Mars. Astrobiology 11(10):1–20

    Article  CAS  Google Scholar 

  • Pfeiffer M, Latorre C, Santoro C, Gayo E, Rojas R, Carrevedo M, McRostic V, Finstad KM, Heimsath A, Jungers M, de Pol-Holz R, Amundson R (2018) Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late Quaternary. Quat Sci Rev 197:224–245. https://doi.org/10.1016/j.quascirev.2018.08.001

    Article  Google Scholar 

  • Pointing S, Warren-Rhodes KA, Lacap D, Rhodes K, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424. https://doi.org/10.1111/j.1462-2920

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB et al (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci 106(47):19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulet F, Bibring J, Mustard J, Gendrin A, Mangold N, Langevin Y, Arvidson R, Gondet B, Gomez C, the Omega team (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627

    Article  CAS  PubMed  Google Scholar 

  • Prothero DR, Schwab F (2004) Sedimentary geology. An introduction to sedimentary rocks and stratigraphy. W. H. Freeman and Co., New York

    Google Scholar 

  • Qu E, Omelon C, Oren A, Meslier V, Cowan D, Maggs-Kölling G, DiRuggiero J (2020) Trophic selective pressures organize the composition of endolithic microbial communities from global deserts. Frontiers Microbiol 10:2952. https://doi.org/10.3389/fmicb.2019.02952

    Article  Google Scholar 

  • Quade J, Rech J, Latorre C, Betancourt J, Glesson E, Kalin M (2006) Soils at the hyperarid margin: the isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochemica et Cosmochemica Acta 71(15):3772–3795. https://doi.org/10.1016/j.gca.2007.02.016

    Article  CAS  Google Scholar 

  • Ramond JB, Woodborne S, Hall G, Seely M, Cowan D (2018) Namib Desert primary productivity is driven by cryptic microbial community N-fixation. Scientific Reports 8:6921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasuk MC (2014) Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb Ecol 68:483–494

    Article  CAS  PubMed  Google Scholar 

  • Rech J, Quade A, Hart W (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica et Cosmochemica Acta 67:575–586

    Article  CAS  Google Scholar 

  • Reheis M (1997) Dust deposition downwind of Owens (dry) lake, 1991–1994: Preliminary findings. JGR Atmospheres 102:25999–26008. https://doi.org/10.1029/97JD01967

    Article  CAS  Google Scholar 

  • Reynolds R, Bogle R, Vogel J, Goldstein H, Yount J (2009) Dust emission at Franklin Lake Playa, Mojave Desert (USA): response to meteorological and hydrological changes 2005–2008. Natural Resources and Environmental Issues V15- Saline Lakes Around the World: Unique Systems with Unique Values: Article 18. http://digitalcommons.usu.edu/nrei/vol15/iss1/18.

  • Robinson CK, Wierzchos J, Black C, Crits-Christoph A, Ma B, Ravel J, Ascaso C, Artieda O, Valea S, Roldán M, Gómez-Silva B, Diruggiero J (2013) Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ Microbiol 17(2):299–315

    Article  Google Scholar 

  • Rosen (1994) Paleoclimate and basin evolution of playa systems. In: Rosen MR (ed) Geological Society of America Special Paper 289. Geological Society of America, Boulder, pp 1–18

    Google Scholar 

  • Rothschild L, Mancinelli R (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Rothschild L, Giver L, White M, Mancinelli R (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438

    Article  CAS  PubMed  Google Scholar 

  • Ruff S, Farmer J (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature 7:13554

    Google Scholar 

  • Ruff S, Farmer J, Calvin W, Herkenhoff K, Johnson J, Morris R, Rice M, Arvidson R, Bell J, Christensen P, Squyres S (2011) Field reconnaissance geologic mapping of the columbia hills, mars based on MER spirit and MRO HiRISE observations. JGR 116:E00F23. https://doi.org/10.1029/2010JE003767

    Article  CAS  Google Scholar 

  • Rundel P (1978) Ecological relationships of desert fog zone lichens. Bryologist 81(2):277–293. https://doi.org/10.2307/3242189

    Article  Google Scholar 

  • Schlesinger H, Pippen J, Wallenstein M, Hofmockel K, Klepeis D, Mahall B (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84(12):3222–3231. https://doi.org/10.1890/02-0549

    Article  Google Scholar 

  • Schulze-Makuch D, Wagner D, Kounaves S, Mangelsdorf K, Devine K, Vera JP, Schmitt-Kopplin P, Grossart HP, Parro V, Kaupenjohann M, Galy A, Schneider B, Airo A, Frösler J, Davila A, Arens F, Cáceres L, Cornejo F, Carrizo D, Dartnell L, DiRuggiero J, Flury M, Ganzert L, Gessner M, Grathwohl P, Guan L, Heinz J, Hess M, Keppler F, Maus D, McKay CP, Meckenstock R, Montgomery W, Oberlin E, Probst A, Sáenz J, Sattler T, Schirmack J, Sephton M, Schloter M, Valenzuela J, Vestergaard G, Wörmer L, Zamorano P (2018) Transitory microbial habitat in the hyperarid Atacama Desert. PNAS 115(11):2670–2675. https://doi.org/10.1073/pnas.1714341115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw P, Bryant R (2011) Pans, playas and salt lakes. In: Thomas DSG (ed) Arid zone geomorpholgy. University of Oxford, London, UK

    Google Scholar 

  • Shen J, Wyness A, Claire M, Zerkle A (2021) Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the Atacama Desert. Microb Ecol 82:442–458. https://doi.org/10.1007/s0024-020-01672-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirisena K, Ramirez S, Steele A, Glamoclija M (2018) Microbial diversity of hypersaline sediments from Lake Lucero playa in White Sands National Monument, New Mexico, USA. Microb Ecol 76:404–418. https://doi.org/10.1007/s00248-018-1142-z

    Article  CAS  PubMed  Google Scholar 

  • Sirisena K, Ramirez S, Steele A, Glamoclija M (2019) Microbial diversity of hypersaline sediments from Lake Lucero playa in White Sands National Monument, New Mexico, USA. Microb Ecol 76:404–418. https://doi.org/10.1007/s00248-018-1142-z

    Article  CAS  Google Scholar 

  • Skelley AM, Aubrey AD, Willis PA, Amashukeli X, Ehrenfreund P, Bada JL, Grunthaner FJ, Mathies RA (2007) Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument. J Geophys Res Biogeosci 112(G4)

    Google Scholar 

  • Smith P, Tamppari L, Arvidson R, Bass D, Blaney D, Boynton W, Carswell A, Catling D, Clark B, Duck T, DeJong E, Fisher D, Goetz W, Gunnlaugsson H, Hecht M, Hipkin V, Hoffman J, Hviid S, Keller H, Kounaves S, Lange C, Lemmon M, Madsen M, Markiewicz W, Marshall J, McKay CP, Mellon M, Ming D, Morris R, Pike W, Renno N, Staufer U, Stoker C, Taylor P, Whiteway J, Zent A (2009) H2O at the phoenix landing site. Science 325:58–61. https://doi.org/10.1126/science.1172339

    Article  CAS  PubMed  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edn. U.S. Department of Agriculture NRCS

    Google Scholar 

  • Squyres S, Grotzinger J, Arvidson R, Bell J, Calvin W, Christensen R, Clark B, Crisp J, Farrand H, Herkenhoff K, Johnson J, Klingelhofer G, Knoll A, McLennan S, McSween H, Morris R, Rice J, Rider R, Soderblom L (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714. https://doi.org/10.1126/science.1104559

    Article  CAS  PubMed  Google Scholar 

  • Squyres S, Arvidson R, Ruff S, Gellert R, Morris R, Ming D, Crumpler L, Farmer J, Des Marais D, Yen A, McLennan S, Calvin W, Bell J, Clark B, Wang A, McCoy T, Schmidt M, de Souza P (2008) Detection of silica-rich deposits on Mars. Science 320:1063. https://doi.org/10.1126/science.1155429

    Article  CAS  PubMed  Google Scholar 

  • Stern J, Sutter B, Freissinet C, Navarro-González R, McKay CP, Archer P, Buch A, Brunner A, Coll P, Eigenbrode J, Faíren A, Franz H, Glavin D, Kashyap S, McAdam A, Ming D, Steele A, Szopa C, Wray P, Martín-Torres F, Zorzano M, Conrad P, Mahaffy P, MSL Science Team (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crater, Mars. Proc Natl Acad Sci USA 112:4245–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steven B, Gallegos-Graves L, Belnap J, Kuske C (2013) Dryland soil microbial communities display biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113. https://doi.org/10.1111/1574-6941.12143

    Article  CAS  PubMed  Google Scholar 

  • Stoertz G, Ericksen GE (1974) Geology of salars in Northern Chile. US Geological Survey, Professional paper, no. 811

    Google Scholar 

  • Stomeo F, Makhalanyane T, Valverde A, Pointing S, Stevens M, Cary SC, Tuffin M, Cowan D (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82(2):326–340. https://doi.org/10.1111/j.1574-6941.2012.01360.x

    Article  CAS  PubMed  Google Scholar 

  • Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin M, Seely M, Cowan D (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337

    Article  PubMed  Google Scholar 

  • Sun H (2013) Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2:693–701. https://doi.org/10.3390/biology2020693

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutter B, McAdam A, Mahaffy P, Ming D, Edgett K, Rampe E, Eigenbrode J, Franz H, Friessinet C, Grotzinger J, Steele A, House C, Archer P, Malespin C, Navarro-González R, Stern J, Bell J, Calef F, Gellert R, Glavin D (2017) Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: results of the Curiosity rover’s sample analysis at Mas instrument from Yellowknife Bay to the Namib Dune. JGR Planets 122:2574–2609. https://doi.org/10.1002/2016JE005225

    Article  CAS  Google Scholar 

  • Szopa C, Freissinet C, Glavin D, Millan M, Buch A, Franz H, Summons R, Sumner D, Sutter B, Eigenbrode J, Williams R, Navarro-González R, Guzman M, Malespin C, Teinturier S, Mahaffy P, Cabane M (2020) First detections of dichlorobenzene isomers and trichloromethylpropane from organic matter indigenous to Mars mudstone in Gale Crate, Mars: results from the sample analysis at Mars instrument onboard the Curiosity rover. Astrobiology 20(2)

    Google Scholar 

  • Szynkiewicz A, Moore C, Glamoclija M, Bustos D, Pratt L (2010) Origin of coarsely crystalline gypsum domes in a saline playa environment at white sands national monument, New Mexico. JGR 115:F02021. https://doi.org/10.1029/2009JF001592

    Article  CAS  Google Scholar 

  • Thornwaite CW (1948) An approach toward a rational classification of climate. Geographical Rev 38(1):55–94

    Article  Google Scholar 

  • Traci C, Streten-Joyce C, Dalton R, Nussear K, Gibb K, Christian K (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12(3):592–607. https://doi.org/10.1111/j.1462-2920.2009.02098

    Article  Google Scholar 

  • Treiman A, Bish D, Vaniman D, Chipera S, Blake D, Ming D, Morris R, Bristow T, Morrison S, Baker M, Rampe E, Downs R, Filiberto J, Glazner A, Gellert R, Thompson L, Schmidt M, Le Deit L, Wiens R, McAdam A, Achilles C, Edgett K, Farmer J, Fendrich K, Grotzinger J, Gupta S, Morookian J, Newcombe M, Rice M, Spray J, Stolper E, Sumner D, Vasavada A, Yen A (2016) Mineralogy, provenance and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J Geophys Res Planets 121:75–106. https://doi.org/10.1002/2015JE004932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull L, Wilcox B, Belnap J, Ravi S, D’Odorico P, Childers D, Gwenzi W, Okin G, Wainwright J, Caylor K, Sankey T (2012) Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrol. 5:174–183. https://doi.org/10.1002/eco.265

    Article  Google Scholar 

  • UNEP, United Nations Environment Programme (1997) In: Middleton N, Thompson D (eds) World Atlas Desertification, 2nd edn. Arnold, New York, p 182

    Google Scholar 

  • UNEP, United Nations Environment Programme (2006) Global Deserts Outlook. UNEP, Nairobi Kenya, p 148

    Google Scholar 

  • Uritskiy G, Getsin S, Munn A, Gómez-Silva B, Davila A, Glass B, Taylor J, DiRuggiero J (2019) Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. https://doi.org/10.1038/s41396-019-0468-y

  • Valverde A, Makhalanyane T, Seely M, Cowan DA (2015) Cyanoabacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol 24:812–821

    Article  CAS  PubMed  Google Scholar 

  • Van Goethem MW, Makhalanyane TP, Valverde A, Cary SC, Cowan DA (2016) Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiol Ecol 92:fiw051. https://doi.org/10.1093/femsec/fiw051

    Article  CAS  PubMed  Google Scholar 

  • Vaniman D, Martínez G, Rampe E, Bristow T, Blake D, Yen A, Ming D, Rapin W, Meslin PY, Morookian J, Downs R, Chipera S, Morris R, Morrison S, Treiman A, Achilles C, Roberston K, Grotzinger J, Hazen R, Wiens R, Sumner D (2018) Gypsum, bassanite and anhydrite at Gale crater, Mars. American Mineralogist 103(7):1011–1102

    Article  Google Scholar 

  • Velland M (2017) The Theory of Ecological Communities. Monographs in Population Biology. University Press, Princeton, USA, p 248

    Google Scholar 

  • Vikram S, Guerrero L, Makhalanyane T, Le P, Seely M, Cowan D (2016) Metagenomic analysis provides insights into functional capacity in a hyperarid desert soil niche community. Environ Microbiol 18(6):1875–1888

    Article  CAS  PubMed  Google Scholar 

  • Vogel S (1955) Niedere ‘Fensterpflanzen’ in der südafrikanischen Wüste. Eine ökologische Schiderung. Beitr Biol Pflanz 31:45–135

    Google Scholar 

  • Vogel M, Des Marais D, Turk K, Parenteau M, Jahnke L, Kubo M (2009) The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiol 9(9):875–893. https://doi.org/10.1089/as5.2008.0325

    Article  CAS  Google Scholar 

  • Walker J, Pace N (2007) Endolithic microbial ecosystems. Ann Rev Microbiol 61:331–347. https://doi.org/10.1146/annurev.micro.61.080706.093302

    Article  CAS  Google Scholar 

  • Walker J, Spear J, Pace N (2005) Geobiology of a microbial endolithic community in the Yellstone geothermal environment. Nature 434:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB et al (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Warren-Rhodes KA, Dungan J, Piatek J, Stubbs K, Gómez-Silva B, Chen Y, McKay CP (2007) Ecology and spatial pattern of cyanobacterial community island-patches in the Atacama Desert, Chile. JGR 112:G04S15. https://doi.org/10.1029/2006JG000305

    Article  Google Scholar 

  • Warren-Rhodes, K.A., McKay, C.P., Ng-Boyle, L., Wing, M., Kiekebusch, E., Cowan, D., Stomeo, F., Pointing, S., Kaseke, K., Eckardt, F., Henschel, J., Anisfeld, A., Seely, M. ad K. Rhodes (2013). Physical ecology of hypolithic communities in the central namib desert: the role of fog, rain, rock habitat and light. JGR Biogeosci 118, 1–10. Doi:https://doi.org/10.1002/jgrg.20117.2013.

  • Warren-Rhodes KA et al (2019) Subsurface microbial habitats in an extreme desert mars-analog environment. Front Microbiol 10:69. https://doi.org/10.3389/fmicb.2019.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Washburn AL (1956) Classification of patterned ground and review of suggested origins. GSA Bulletin 67(7):823–866. https://doi.org/10.1130/0016-7606(1956)67(823:COPGAR)2.0.CO.2

    Article  Google Scholar 

  • Wei S, Lacap-Bugler D, Pérez-Ortega S, de los Rios-Murillo A, Lee C (2014) Characterization of chasmoendolithic community in miers valley, McMurdo dry valleys, Antarctica. Microbiol Ecol 68:351–359. https://doi.org/10.1007/s00248-014-0412-7

    Article  Google Scholar 

  • Wei S, Lacap-Bugler D, Lau M, Caruso T, Rao S, de los Rios A, Archer S, Chiu J, Higgens C, Van Nostrand J, Zhou J, Hopkins D, Pointing SB (2016) Taxonomic and functional diversity of soil and hypolithic microbial communities in miers valley, mcmurdo dry valleys, antarctica. Front Microbiol 7:1642. https://doi.org/10.3389/fmicb.2016.01642

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss M, Preiner M, Xavier J, Zimorski V, Martin W (2016) The physiology and habitat of the last universal common ancestor. PLoS Genet 14(8):e1007518. https://doi.org/10.1038/nmicrobiol.2016.116

    Article  CAS  Google Scholar 

  • Wharton R, Crosby J, McKay CP, Rice J Jr (1995) Paleolakes on Mars. J Paleolimnol 13:167–283

    Article  Google Scholar 

  • Wierzchos J, Ascaso C (2001) Life, decay and fossilization of endolithic microorganisms from the Ross Desert, Antarctica. Polar Biol. https://doi.org/10.1007/s003000100296

  • Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol. https://doi.org/10.1017/S1473550402001052

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic Cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert. Astrobiology 6:415–422

    Article  PubMed  Google Scholar 

  • Wierzchos J, Cámara B, De los Ríos A et al (2011) Microbial colonization of ca-sulfate crusts in the hyperarid core of the atacama desert: implications for the search for life on Mars. Geobiology 9:44–60

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Davila AF, Sánchez-Almazo IMM et al (2012a) Novel water source for endolithic life in the hyperarid core of the atacama desert. Biogeosciences 9:3071–3098

    Article  Google Scholar 

  • Wierzchos J, de los Ríos A, Ascaso C (2012b) Microorganisms in desert rocks: the edge of life on earth. Int Microbiol 15:173–183

    CAS  PubMed  Google Scholar 

  • Wierzchos J, Davila A, Artieda O, Cámara-Gallego B, de los Ríos A, Nealson K, Valea S, García-González T, Ascaso C (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on Mars. Icarus 224(2):334–346. https://doi.org/10.1016/j.icarus.2012.06.009

    Article  Google Scholar 

  • Wierzchos J, DiRuggiero J, Vitek P, Artieda O, Souza-Egipsy V, Skaloud P, Tisza M, Davila A, Vilchez C, Garbayo I, Ascaso C (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front Microbiol 6:934. https://doi.org/10.3389/fmicb.2015.00934

    Article  PubMed  PubMed Central  Google Scholar 

  • Wierzchos J, Casero C, Artieda O, Ascaso C (2018) Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 43:124–131. https://doi.org/10.1016/j.mib.2018.01.003

    Article  PubMed  Google Scholar 

  • Wilhelm MB, Davila A, Eignebrode J, Parenteau M, Jahnke L, Liu XL, Summons R, Wray J, Stamos B, O’Reilly S, Williams A (2017) Xeropreservation of functionalized lipid biomarkers in hyperarid soils in the Atacama Desert. Organic Geochem 103:97–104

    Article  CAS  Google Scholar 

  • Wilhelm MB, Davila A, Parenteau M, Jahnke L, Abate M, Cooper G, Taylor Kelly E, Parro V, Villadangos M, Blanco Y, Glass B, Wray J, Eigenbrode J, Simmons R, Warren-Rhodes K (2018) Constraints on the metabolic activity of microorganisms in Atacama surface soils inferred from refractory biomarkers: Implications for Martian habitability and biomarker detection. Astrobiology 18(7):955–966. https://doi.org/10.1089/ast.2017.1705

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Buck B, Beyene M (2012) Biological soil crusts in the Mojave Desert USA: Micromorphology and pedogenesis. J Soil Sci Soc Am. https://doi.org/10.2136/sssaj2012.0021

  • Wong K, Lacap D, Lau M, Aitchison J, Cowan D, Pointing SB (2010) Hypolithic colonization of quartz pavement in the high altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Wray J, Murchie S, Squyres S, Seelos F, Tornabene L (2009) Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37(11):1043–1046. https://doi.org/10.1130/G30331A.1

    Article  CAS  Google Scholar 

  • Yen Y, Ming D, Gellert R, Vaniman D, Clark B, Morris R, Mittlefehldt D, Arvidson R, The Athena and MSL Science teams (2014) Investigation of Martian aqueous processes using multiple alpha particle X-ray spectrometer (APXS) datasets. Eighth Int Mars Conference, July 14–18, 2014, Jet Propulsion Lab, Pasadena CA

    Google Scholar 

  • Yingst R, Berger J, Cohen B, Hynek B, Schmidt M (2016) Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: a GeoHeuristic Operational Strategies Test. Acta Astronaut 132:268–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Yingst R, Bartley J, Chidsey T Jr, Cohen B, Hynek B, Kah L, Minitti M, Vanden Berg M, Williams R, Adams M, Black S, El-Maarry M, Gemperline J, Kronyak R, Lotto M (2020) Is a linear or a walkabout protocol more efficient when using a rover to choose biologically relevant samples in a small region of interest. Astrobiology 20(3):327–347. https://doi.org/10.1089/ast.2019.2090

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa K (2003) Origin of the polygons and the thickness of vastitas borealis formation in Western Utopia Planitia on Mars. J Geophys Res Lett 30(12):1603. https://doi.org/10.1029/2003GL017165

    Article  Google Scholar 

  • Yung C, Chan Y, Lacap D, Pérez-Ortegao S, de los Rios-Murillo A, Lee C, Cary SC, Pointing SB (2014) Characterization of chasmoendolithic community in Miers valley, McMurdo Dry Valleys, Antarctica. Microbiol Ecol 68:351–359. https://doi.org/10.1007/s00248-014-0412-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate access to the data and insights for the Curiosity samples at Gale Crater from Ashwin Vasavada, Brad Sutter, and David Blake. We also kindly thank Stephen B. Pointing, Stephen Archer, Mary Beth Wilhelm, Chris Greening, and Charles Cockell for sharing their technical expertise on various aspects of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Warren-Rhodes .

Editor information

Editors and Affiliations

9.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warren-Rhodes, K., Phillips, M., Davila, A., McKay, C.P. (2022). Insights of Extreme Desert Ecology to the Habitats and Habitability of Mars. In: Ramond, JB., Cowan, D.A. (eds) Microbiology of Hot Deserts. Ecological Studies, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-030-98415-1_9

Download citation

Publish with us

Policies and ethics