
Benavides, David (Ed.); Metzger, Andreas (Ed.); Eisenecker, Ulrich (Ed.)

Research Report

Third International Workshop on Variability Modelling
of Software-intensive Systems. Proceedings

ICB-Research Report, No. 29

Provided in Cooperation with:
University Duisburg-Essen, Institute for Computer Science and Business Information Systems
(ICB)

Suggested Citation: Benavides, David (Ed.); Metzger, Andreas (Ed.); Eisenecker, Ulrich (Ed.)
(2009) : Third International Workshop on Variability Modelling of Software-intensive Systems.
Proceedings, ICB-Research Report, No. 29, Universität Duisburg-Essen, Institut für Informatik
und Wirtschaftsinformatik (ICB), Essen

This Version is available at:
https://hdl.handle.net/10419/58158

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/58158
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ICB-RESEARCH REPORT

ICB
Institut für Informatik und
Wirtschaftsinformatik

UNIVERSITÄT

D U I S B U GR
E S S E N

Proceedings

ICB-Research Report No. 29

January 2009

Third International Workshop on Variability
Modelling of Software-intensive Systems

David Benavides

Andreas Metzger

Ulrich Eisenecker (Eds.)

Die Forschungsberichte des Insti tuts
für Informatik und Wirtschaftsinfor ‐
matik dienen der Darstellung vorläu ‐
f iger Ergebnisse, die i . d. R. noch für
spätere Veröffentlichungen überarbei‐
tet werden. Die Autoren sind deshalb
für kritische Hinweise dankbar.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Contact :

Insti tut für Informatik und
Wirtschaftsinformatik (ICB)
Universi tät Duisburg‐Essen
Universi tätsstr . 9
45141 Essen

Tel. : 0201‐183‐4041
Fax: 0201‐183‐4011
Email : icb@uni‐duisburg‐essen.de

Proceedings

Edited By:

David Benavides

Universi ty of Sevil le, Spain

benavides@us.es

Andreas Metzger

Universi ty of Duisburg ‐Essen, Germany

andreas.metzger@sse.uni‐due.de

Ulrich Eisenecker

Universi ty of Leipzig, Germany

eisenecker@wifa.uni‐ leipzig.de

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica‐
t ions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Übersetzung, des Nachdru‐
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen – auch bei
nur auszugsweiser Verwertung.

ISSN 1860‐2770 (Print)
ISSN 1866‐5101 (Online)

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff
Prof. Dr. Klaus Echtle
Prof. Dr. Stefan Eicker
Prof. Dr. Ulrich Frank
Prof. Dr. Michael Goedicke
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Müller ‐Clostermann
Prof. Dr. Klaus Pohl
Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

VaMoS’09

i

Abstract
This ICB Research Report constitutes the proceedings of the Third International Workshop
on Variability Modelling of Software‐intensive Systems (VaMoS’09), which was held from
January 28–30, 2009 at the University of Sevilla, Spain.

VaMoS’09

ii

VaMoS’09

iii

Table of Contents

1 MESSAGE FROM THE ORGANIZERS .. 1

2 ORGANIZATION .. 2

3 WORKSHOP FORMAT .. 3

4 TECHNICAL PROGRAMME ... 4

VaMoS’09

1

1 Message from the Organizers

Welcome to the third International Workshop on Variability Modelling of Software‐intensive
Systems: VaMoS’09!

Previous VaMoS workshops have been held in

• Limerick (2007) and
• Essen (2008).

The aim of the VaMoS workshop series is to bring together researchers from various areas of
variability modelling in order to discuss advantages, drawbacks and complementarities of
the various variability modelling approaches, and to present novel results for variability
modelling and management.

Continuing the successful format of the two previous VaMoS workshops, VaMoS 2009 will
be a highly interactive event. Each session will be organized in such a way that discussions
among the workshop participants will be stimulated. We hope that VaMoS will trigger work
on new challenges in variability modelling and thus will help to shape the future of variabil‐
ity modelling research.

VaMoS’09 has attracted 32 submissions of authors from 15 countries. Each submission was
reviewed by at least three members of the programme committee. Based on the reviews, 18
submissions have been accepted as full papers and 4 submissions have been accepted as
short papers documenting tool demonstrations.

We like to extend our gratitude to all the people who spent time and energy to make VaMoS
a success. VaMoS’09 would not have been possible without their efforts and expertise. We
are thankful to Don Batory who accepted our invitation to give a keynote talk on “Dimen‐
sions of Variability in Software Product Lines”. We cordially thank all the members of the
VaMoS programme committee for devoting their time to reviewing the submitted papers.
We are grateful to the people who helped preparing and organizing the event, especially
Sergio Segura, Pablo Trinidad, Adela del Río, Octavio Martín and Manuel Resinas. Finally,
we thank the sponsors of VaMoS: The University of Sevilla, The University of Leipzig and
the University of Duisburg‐Essen.

Enjoy VaMoS 2009 and a beautiful Sevilla!

The VaMoS organizers

David Benavides Andreas Metzger Ulrich Eisenecker

VaMoS’09

2

2 Organization

Organizing Committee

David Benavides, University of Seville, Spain

Andreas Metzger, University of Duisburg‐Essen, Germany

Ulrich Eisenecker, University of Leipzig, Germany

Steering Committee

Klaus Pohl, University of Duisburg‐Essen, Germany

Patrick Heymans, University of Namur, Belgium

Kyo‐Chul Kang, Pohang University of Science and Technology, Korea

Programme Committee

Don Batory, University of Texas, USA

Jürgen Börstler, Umeå University, Sweden

Manfred Broy, TU Munich, Germany

Pascal Costanza, Free University of Brussels, Belgium

Oscar Díaz, Universidad del País Vasco, Spain

Xavier Franch, Universidad Politécnica de Catalunya, Spain

Stefania Gnesi, ISTI‐CNR, Italy

Paul Gruenbacher, Johannes Kepler Universitat Linz, Austria

Øystein Haugen, University of Oslo & SINTEF, Norway

Tomoji Kishi, Japan Advanced Institute of Science and Technology

Roberto Lopez‐Herrejon, Bournemouth University, UK

Tomi Männistö, Helsinki University of Technology, Finland

Kim Mens, Université catholique de Louvain, Belgium

Dirk Muthig, Fraunhofer IESE, Germany

Linda Northrop, SEI, USA

Vicente Pelechano, Universidad Politécnica de Valencia, Spain

Antonio Ruiz‐Cortés, Universidad de Sevilla, Spain

Camille Salinesi, University of Paris 1‐Sorbonne, France

Klaus Schmid, University of Hildesheim, Germany

Doug Schmidt, Vanderbilt University, USA

Vijay Sugumaran, Oakland University, USA

Steffen Thiel, Lero, Limerick, Ireland

Frank van der Linden, Philips, The Netherlands

Jilles van Gurp, Nokia Research, Finland

Matthias Weber, Carmeq GmbH, Germany

Liping Zhao, University of Manchester, UK

VaMoS’09

3

3 Workshop Format
As VaMoS is planned to be a highly interactive event, each session is organized in order to
stimulate discussions among the presenters of papers, discussants and the other participants.
Typically, after a paper is presented, it is immediately discussed by two pre‐assigned dis‐
cussants, after which a free discussion involving all participants follows. Each session is
closed by a general discussion of all papers presented in the session. For VaMoS, each of the
sessions will typically consist of two paper presentations, two paper discussions, and one
general discussion.

Three particular roles, which imply different tasks, are taken on by the VaMoS attendees:

1) Presenter

A presenter obviously presents his paper but additionally will be asked to take on the role of
discussant for the other paper in his session. It is highly desired that – as a presenter – you
attend the complete event and take an active part in the discussion of the other papers. Pre‐
pare your presentation and bear in mind the available time, which is 15 min for the paper
presentation.

2) Discussant

A discussant prepares the discussion of a paper. Each paper is assigned to two discussants
(typically the presenter of the other paper in the same session and a presenter from another
session). A discussant’s task is to give a critical review of the paper directly after its presenta‐
tion. This task is guided by a predefined set of questions that are found in the discussion
template provided by the VaMoS organizers.

3) Session Chair

A session chair’s tasks are as follows:

Before the session starts:

• Make sure that all presenters and presentations are available.

• Make sure that all discussants are present and that they have downloaded their dis‐
cussion slides to the provided (laptop) computer.

For each paper presentation:

• Open your session and introduce the presenters.

• Keep track of time and signalize the presenters when the end of their time slot is ap‐
proaching.

• Invite the discussants and organize the individual paper discussions, i.e., ensure that
the discussion is structured.

• Close the paper discussion and hand over to the next presenter.

After the last presentation:

• Lead through and moderate the general discussion.

• Finally, close the session when the allotted time has elapsed.

VaMoS’09

4

4 Technical Programme

Keynote

Dimensions of Variability in Software Product Lines
Don Batory ... 7

Research Papers (Full Papers)

Comparitive Study of Variability Management in Software Product Lines and Runtime Adaptable
Systems
Vander Alves, Daniel Schneider, Martin Becker, Nelly Bencomo, Paul Grace .. 9

Evolving a Software Product Line Reuse Infrastructure: A Configuration Management solution
Michail Anastasopoulos, Thiago Henrique Burgos de Oliveira, Dirk Muthig, Eduardo Santana Almeida ,
Silvio Romero de Lemos Meira ... 19

Analysis of Feature Models using Generalised Feature Trees
Pim van den Broek, Ismênia Galvão ... 29

Visualising Inter‐Model Relationships in Software Product Lines
Ciarán Cawley, Steffen Thiel, Goetz Botterweck, Daren Nestor .. 37

Modeling Variation in Production Planning Artifacts
Gary J. Chastek, John D. McGregor ... 45

A Formal Semantics for Multi‐level Staged Configuration
Andreas Classen, Arnaud Hubaux, Patrick Heymans ... 51

A Model for Trading off Flexibility and Variability in Software Intensive Product Development
Wim Codenie, Nicolás González‐Deleito, Jeroen Deleu, Vladimir Blagojević, Pasi Kuvaja, Jouni Similä 61

Deontic Logics for Modeling Behavioural Variability
Alessandro Fantechi, Patrizia Asirelli, Maurice ter Beek, Stefania Gnesi ... 71

Structuring the Product Line Modeling Space: Strategies and Examples
Paul Grünbacher, Rick Rabiser, Deepak Dhungana .. 77

Functional Variant Modeling for Adaptable Functional Networks
Cem Mengi, Ibrahim Armaç .. 83

Modelling Imperfect Product Line Requirements with Fuzzy Feature Diagrams
Joost Noppen, Pim van den Broek, Nathan Weston, Awais Rashid ... 93

VaMoS’09

5

Towards End‐User Development of Smart Homes by means of Variability Engineering
Francisca Pérez, Carlos Cetina, Pedro Valderas, Joan Fons ... 103

Dealing with Variability in Architecture Descriptions to Support Automotive Product Lines
Stefan Mann, Georg Rock .. 111

A Preliminary Comparison of Formal Properties on Orthogonal Variability Model and Feature
Models
Fabricia Roos‐Frantz .. 121

Some Challenges of Feature‐based Merging of Class Diagrams
Germain Saval, Jorge Pinna Puissant, Patrick Heymans, Tom Mens ... 127

Benchmarking on the Automated Analyses of Feature Models: A Preliminary Roadmap
Sergio Segura, Antonio Ruiz‐Cortés .. 137

Abductive Reasoning and Automated Analysis of Feature Models: How are they connected?
Pablo Trinidad, Antonio Ruiz‐Cortés .. 145

An Industrial Case Study on Large‐Scale Variability Management for Product Configuration in the
Mobile Handset Domain
Krzysztof Wnuk, Björn Regnell, Jonas Andersson and Samuel Nygren ... 155

Tool Demonstrations (Short Papers)

A Design of a Configurable Feature Model Configurator
Goetz Botterweck, Mikoláš Janota, Denny Schneeweiss .. 165

Using First Order Logic to Validate Feature Model
Abdelrahman O. Elfaki, Somnuk Phon‐Amnuaisuk, Chin Kuan Ho ... 169

VMWare: Tool Support for Automatic Verification of Structural and Semantic Correctness in Prod‐
uct Line Models
Camille Salinesi, Colette Rolland, Raúl Mazo ... 173

A Tool for Modelling Variability at Goal Level
Farida Semmak, Christophe Gnaho, Régine Laleau ... 177

VaMoS’09

6

Dimensions of Variability in Software Product Lines

Don Batory
Department of Computer Science

University of Texas at Austin
Austin, Texas 78712

batory@cs.utexas.edu

Abstract

Transformation-based program synthesis is a
hallmark of automated program development. Some
time ago, we discovered that the design of a program
could be expressed as a matrix of transformations,
where both rows and columns represented features.
The technique was called Origami, as the matrix was
folded in precise ways (thereby composing
transformations) until a scalar was produced. This
scalar defined an expression (a composition of
transformations) that, when evaluated, synthesized the
program. Origami generalized to n-dimensional
matrices, where each axis defined a dimension of
variability. But we never quite understood why
Origami worked.

Our research seeks principles of automated
construction that can be appreciated by practitioners
and that are expressed in terms of simple mathematics.
This talk explains Origami by an interesting
integration of diverse topics: data cubes (database
technology), basic ideas from tensors and categories
(mathematics), extensibility problem (programming
languages), and feature interactions (software design).

VaMoS'09

7

VaMoS'09

8

Comparitive Study of Variability Management in
Software Product Lines and Runtime Adaptable Systems

Vander Alves, Daniel Schneider, Martin Becker
Fraunhofer IESE

Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
<first name>.<last name>@iese.fraunhofer.de

Nelly Bencomo, Paul Grace
Computing department, InfoLab21, Lancaster University,

Lancaster, LA1 4WA, United Kingdom
{nelly, gracep}@comp.lancs.ac.uk

Abstract

Software Product Lines (SPL) and Runtime Adaptation
(RTA) have traditionally been distinct research areas ad-
dressing different problems and with different communities.
Despite the differences, there are also underlying common-
alities with synergies that are worth investigating in both
domains, potentially leading to more systematic variability
support in both domains. Accordingly, this paper analyses
commonality and differences of variability management be-
tween SPL and RTA and presents an initial discussion on
the feasibility of integrating variability management in both
areas.

1. Introduction

Software Product Line (SPL) [15] and Runtime Adap-
tation (RTA) [35] have traditionally been distinct research
areas addressing different problems and with different com-
munities (e.g., SPLC and ICSR in the former area and Mid-
dleware in the latter). SPL deals with strategic reuse of
software artifacts in a specific domain so that shorter time-
to-market, lower costs, and higher quality are achieved.
In contrast to that, RTA aims for optimized service pro-
visioning, guaranteed properties, and failure compensation
in dynamic environments. To this end, RTA deals mostly
with dynamic flexibility so that structure and behaviour is
changed in order to dynamically adapt to changing condi-
tions at runtime.

Despite the differences, there are also underlying com-
monalities with synergies that are worth investigating across
both domains. For instance, in terms of commonalities,

both areas deal with adaptation of software artifacts: by
employing some variability mechanism applied at a specific
binding time, a given variant is instantiated for a particular
context. Accordingly, the research community has recently
begun to explore the synergies between these two research
areas.

On the one hand, motivated by the need of producing
software capable of adapting to fluctuations in user needs
and evolving resource constraints [27], SPL researchers
have started to investigate how to move the binding time
of variability towards runtime [4, 11, 33], also noticeable
in the research community with even specific venues, such
as the Dynamic Software Product Line (DSPL) workshop
at SPLC, currently in its second edition. On the other
hand, motivated by the need of more consolidated meth-
ods to systematically address runtime variability, RTA re-
searchers have started to investigate leveraging SPL tech-
niques [24, 14, 10].

Nevertheless, in either case, a refined and systematic
comparison between these two areas is still missing. Such
comparison could help to explore their synergy with cross-
fertilization that could lead to more systematic variability
support in both domains.

In this context, this paper presents two key contributions:

• it analyses commonality and differences of variabil-
ity management between SPL and RTA. We define
variability management as the handling of variant and
common artifacts during software lifecycle including
development for and with reuse. We choose variability
management because we see it as the common denom-
inator for exploring synergies between SPL and RTA;

• it presents an initial discussion on the feasibility of in-
tegrating variability management in SPL and RTA.

VaMoS'09

9

The remainder of this paper is structured as follows. Sec-
tions 2 and 3 briefly review conceptual models for variabil-
ity management in SPL and RTA. Next, Section 4 presents
comparison criteria and compares variability management
between SPL and RTA approaches. Section 5 then discusses
potential integration of SPL and RTA. Related work is con-
sidered in Section 6, and Section 7 offers concluding re-
marks.

2. Software Product Line Variability Manage-
ment

There are different approaches for describing SPL vari-
ability, for instance Orthogonal Variability Model [38] and
PuLSE’s meta-model [7]. In this work, we comply with the
latter, since it has been applied in research and industrial
projects for years. In particular, Figure 1 depicts the con-
ceptual model for a SPL, with a focus on variability man-
agement. The figure is based on a simplified version of the
meta-model proposed by Muthig [36], highlighting some
parts of the instantiation process and the actors involved.

A SPL comprises a set of products and a SPL infras-
trucutre developed in a specific domain. The first are de-
veloped by the application engineer, whereas the latter are
developed by the domain engineer and are reused in more
than one product. The SPL infrastructure consists of SPL
assets, which in turn comprise a decision model and SPL
artifacts. A special kind of PLAsset is the PLArchitec-
ture, which represents the SPL reference architecture. SPL
artifacts are generic SPL artifacts, i.e., they embed varia-
tion points which have an associated binding time and can
be described according to a given mechanism. A decision
model represents variability in a SPL in terms of open de-
cisions and possible resolutions. In a decision model in-
stance, known as Product Model, all decisions are resolved,
which is used to instantiate a specific product from SPL ar-
tifacts [6].

A product consists of product artifacts in a given con-
text. A product artifact is an instance of SPL artifacts and
comprises Variants, which in turn are instances of variation
points after these have been resolved by the decision model
when the application engineer configures this model into the
product model.

Binding time refers to the time at which the decisions for
a variation point are bound [32]. Examples of binding time
are pre-compilation, compilation, linking, load, or runtime.
Traditionally, SPL has been used mostly without the latter
binding time. Therefore, in those cases, with instantiation
of the product, variability is bound and a specific running
application is obtained. Variation points and decision mod-
els then do not persist in the generated product.

Another artifact that does not persist in the generated
product is context. We adopt the general definition of con-

text proposed by Dey et al. [18]:“Context is any information
that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered
relevant to the interaction between a user and an applica-
tion, including the user and the application themselves”.
For example, context can be language or regulations. Al-
though context is considered during domain analysis and is
used by the decision model, it is not explicitly integrated
into the instantiated product. Further, it is often not for-
mally represented; rather, it is usually informally available
to the domain and application engineers in non-computable
form [17].

Since variation points, decision models, and context usu-
ally do not exist in the instantiated SPL products, switching
from one product to another product is only possible at ear-
lier binding times. The corresponding transition then is not
from one variant to another, but from the design space to
a variant and requires direct intervention of the application
engineer.

3. Runtime Adaptation Variability Manage-
ment

In this paper, an adaptable system is a system that can
be changed at runtime to better meet users’ needs, and an
adaptive system is a systems that changes by itself at run-
time. The discussion in this paper focuses more in adaptive
systems. The domain model for runtime adaptation showing
the concepts that are relevant to this paper is depicted in Fig-
ure 2. The domain model is based on previous work on de-
veloping Dynamically Adaptive Systems (DASs) in middle-
ware research [10, 26]. We define a DAS as a software sys-
tem with enabled runtime adaptation. Runtime adaptation
takes place according to context changes during execution.
Example of DASs we have developed at Lancaster Univer-
sity are the adaptive flood warning system deployed to mon-
itor the River Ribble in Yorkshire, England [30, 29, 10]; and
the service discovery application described in [16]. The fig-
ure serves as a conceptual model to help explain the descrip-
tion that follows.

A Reference Architecture addresses specific solution
Domains, such as routing algorithms, networking technolo-
gies, and service discovery. The Reference Architecture is
specified by the Domain Engineer. DAS will typically em-
ploy a number of System Variants, which are sets of Com-
ponent Configurations. Different component configurations
can result in different connection topologies (compositions)
as well as in different “internal” behaviour (parameters).
Dynamic adaptation is achieved via transitions between
Component Configuration variations over time; for exam-
ple, components being added, removed and replaced, as the
DAS adapts based upon environmental context changes. In
any case, every Component Configuration must conform to

VaMoS'09

10

Figure 1. Variability Management in Software Product Lines.

the Reference Architecture, which describes the structural
commonalities of a DAS that always hold.

In addition to models describing the configuration space
at runtime, we require means to identify situations when
to adapt and which configuration to choose. This is repre-
sented in Figure 2 by the transitions. A transition starts in
a previous system variant and ends in a next variant. Tran-
sitions occur due to Triggers. Triggers are specified by the
Application Engineer in terms of conditions of environment
and context. We distinguish between two different types of
approaches on how the best system variant can be deter-
mined [41]:

1. Rule-based approaches [10, 41, 43] usually have the
“Event-Condition-Action” (ECA) form and hence dis-
tinctly specify when to adapt and which variant to
choose. Such approaches are widely spread in the do-
mains of sensor computing, embedded systems, and
mobile computing. One reason is that such systems
need to rely on light-weight approaches due to the
inherent scarcity of resources (e.g., processing time,
power supply) and must be deterministic. The rule sets
are usually to be specified at design time. However,
rules can also be added during execution [10].

2. Goal-based approaches [28, 34, 39] equip the system
with goal evaluation functions in order to determine

the best system variant under current circumstances.
Neglecting available optimization strategies, the brute
force approach would determine and evaluate all cur-
rently valid system variants and choose the variant that
meets best the given goals. Thus, goal-based adapta-
tion can be more flexible than rule-based adaptation
and it is more likely that optimal configurations can be
identified, albeit at a higher resource usage.

For example, reconfiguration policies can take the form
of ECA rules. Actions are changes to component config-
urations while events in the environment are notified by a
context manager. System Variants will change in response
to changes of Environment Variants. Environment Vari-
ants represent properties of the environment that provide
the context for the running system. Different values as-
sociated with these properties define the possible triggers
of the transitions. System Variants represent different con-
figurations permissible within the constraints of the DASs
Reference Architecture. Environment Variants are speci-
fied by Domain Engineers. The variation points associated
with the component configurations are specified using or-
thogonal variability models [38], which are not described
in Figure 2 but addressed elsewhere [10]. For the DAS to
operate in the context of any Environment Variant, it needs
to be configured as the appropriate System Variant.

Dynamic reconfiguration can be performed via the dy-

VaMoS'09

11

Figure 2. Variability Management in runtime adaptable system.

namic composition of components at runtime. However, the
methodology is equally applicable to other runtime compo-
sition mechanisms, e.g., dynamic AOP.

In RTA, systems may need to adapt to the prevailing sit-
uation on their own. Therefore there needs to be runtime
models defining when and how to adapt. Further, there
needs to be a notion of context, as acceptable configurations
strongly depend upon the prevailing situation. We consider
the following aspects as typical drivers for runtime adapta-
tion: changes in required functionality and Quality of Ser-
vice (QoS), including dependability, changes in the avail-
ability of services and resources, and occurrence of failures.

4. Comparison of Variability Management be-
tween SPL and RTA

After briefly presenting conceptual models of variabil-
ity for SPL and RTA in Sections 2 and 3, respectively, we
now compare both domains. First, we present comparison
criteria (Section 4.1) and then perform the comparison (Sec-
tion 4.2). The result of the comparison is later discussed in
Section 5 for potential synergies.

4.1 Comparison Criteria

With the goal of identifying synergy points in variability
management between SPL and RTA, the comparison crite-
ria we use are based on previous work by Becker et al. [8]
and by McKinley et al. [35], both in the context of RTA, and
on the taxonomy proposed by Svahnberg et al. [40] in the
context of SPL. The criteria are as follows:

• Goal: addresses the goal(s) of variability. If there is
no goal or driver for variability, the rest of the criteria
are irrelevant. Goals are generally expressed as state-
ments over a variability driver. Some examples of vari-
ability drivers are the following: functionality, quality
(dependability), resources (e.g., CPU, memory, com-
munication, display, time, energy), context (e.g., reg-
ulation, culture, language). A goal, for instance, is to
improve dependability or optimize resource usage;

• Binding time: time when the variability decisions are
resolved, e.g., pre-compilation, compilation, linking,
load, or runtime;

• Mechanism: a software development technique that
is used to implement a variation point, e.g., para-
metric polymorphism, subtype polymorphism, design
patterns, aspects, conditional compilation, reflection,

VaMoS'09

12

selection of one among alternative implementations,
frames;

• Who: defines who resolves the variability decisions. It
can be the domain engineer, the application engineer,
the user, or the application itself;

• Variability Models: define the models that have vari-
ation points or that control adaptation, e.g., decision
model, reference architecture, PLArtifact, reconfigu-
ration policies.

4.2 Comparison Results

According to the comparison criteria presented in the
previous section, Table 1 compares variability management
in RTA and SPL.

In terms of goals, although the fulfilment of functional
and non-functional requirements is common in both SPL
and RTA, SPL has focused more on providing fulfilment
of functional requirements than RTA, and RTA has focused
more on improving QoS than SPL. However, recently there
has been a trend for SPL research to address QoS more
closely [9, 22, 21, 24], which still remains an open is-
sue and thus an explicit submission topic in key venues,
e.g., SPLC09 [1]. Conversely, in RTA plugin architectures
or component frameworks have enabled inclusion of new
functionality into systems, e.g., web browser plugins.

Binding time in SPL has traditionally been at pre-
compile, compile, and link time, whereas in RTA variability
has been achieved at load time when the system (or compo-
nent configuration) is first deployed and loaded into mem-
ory, and more commonly at runtime after the system has
begun executing. The earlier binding in SPL usually al-
lows for some static optimization and is thus usually more
suitable for resource constrained systems, whereas the late
binding time in RTA favours flexibility instead. Never-
theless, as mentioned previously, binding time in SPL has
started to shift also to runtime in the context of DSPLs. Ad-
ditionally, SPLs have also been built with flexible binding
times, i.e., variation points that can have different binding
times and binding times selected based on domain-specific
context [12].

SPL mechanisms include diverse mechanisms such as
conditional compilation, polymorphism, Aspect-Oriented
Programming (AOP), Frames, parameterization, for ex-
ample [3], and can be classified according to introduc-
tion times, open for adding variant, collection of variants,
binding times, and functionality for binding [40]. On the
other hand, at the core of all approaches to RTA adap-
tation is a level of indirection for intercepting and redi-
recting interactions among program entities [35]. Accord-
ingly, key technologies are computational reflection, AOP,

and component-based design. Examples of correspond-
ing techniques are Meta-Object Protocols (MOP) [31], dy-
namic aspect weaving, wrappers, proxies, and architectural
patterns (such as the Decentralized Control reconfiguration
pattern [25]). RTA mechanisms can be described accord-
ing to the taxonomy by McKinley et al. [35], which high-
lights how, when, and where to compose adaptations. Key
technologies and techniques for RTA variability can also be
used for SPL variability, but in cases where runtime binding
time is not required this leads to suboptimal resource usage,
since variation points persist unnecessarily. Nevertheless,
not all SPL variability mechanism can be used for address-
ing variability in RTA, e.g., conditional compilation. Addi-
tionally, SPL mechanisms allow transitions from PLArtifact
to Product Artifact at early binding time, whereas in RTA
transitions occur from component configuration to another
component configuration at runtime.

In SPL it is the application engineer who is responsi-
ble for resolving and implementing variability decisions.
This includes the instantiation of corresponding PLArti-
facts (with aid of the decision model), the development of
product-specific artifacts and their integration. The respon-
sible entity in RTA depends on the actual binding time. It
is an expert/user at load time and the system itself at run-
time. Consequently, the system requires means to perform
the role of the application engineer during runtime (and par-
tially so at load time), when, due to context changes, recon-
figuration is necessary so that a new variant is generated.
As mentioned in Section 3, the application engineer in RTA
only specifies the triggers, but does not actually perform the
adaptation. Instead, triggers themselves play this role.

In terms of variability models, SPL involves using
mechanisms to adapt PLArtifacts according to the decision
model, whereas RTA mechanisms adapt System Variants
according to the configuration models and the reconfigura-
tion policies. These variants are then an instance of the Ref-
erence Architecture. RTA variability models are inherently
available at runtime, thus requiring an explicit and computa-
tionally tangible representation of all such artifacts, whereas
variability SPL artifacts in general do not have a runtime
representation and are often expressed informally.

5. Analysis and Potential Synergy

Based on the comparison from the previous section, we
can now highlight some commonalities between SPL and
RTA variability management. This is essential to foster po-
tential synergy and cross-fertilization of best practices in
both research areas, which is feasible given the recent inter-
est in DSPLs [27].

As mentioned in Section 4.2, the distinction between
variability management goals of both areas has become
blurred. Since SPL now addresses QoS more commonly,

VaMoS'09

13

Criteria SPL RTA
Goal Focus on functional requirements Focus on improving QoS while maintaining

functional requirements
Binding time Mostly Pre-process/Compile/Linking Load time/Runtime
Mechanism e.g., conditional compilation, polymorphism, e.g., MOP, dynamic aspect weaving,

AOP, Frames, parameterization wrappers, proxies
Who Application Engineer Expert/User, Application itself
Variability Models Decision Model, PLArtifact Reference archtecture, System Variant, Variability rules

Table 1. Comparison of Variability Management between SPL and RTA.

it could benefit from well-established techniques for guar-
anteeing QoS at runtime that have been used in RTA. For
example, Adapt [23] is an open reflective system that in-
spects the current QoS and then uses MOPs to alter the be-
haviour of the system through component reconfiguration
if the required level of service is not maintained. Addi-
tionally, hybrid feature models, incorporating both func-
tionality and QoS have also been proposed, e.g., by Be-
navides [9, 22, 21]. Conversely, RTA can use models for
describing variability, such as enhanced versions of feature
models [33] suitable for dynamic reconfiguration. Never-
theless, in this latter, there is still the challenge of address-
ing QoS issues [33].

Runtime binding time is on the focus of current re-
search in SPL [33, 42, 4] and could leverage correspond-
ing mechanisms in RTA. Wolfinger et al. [42] demonstrate
the benefits of supporting runtime variability with a plug-in
platform for enterprise software. Automatic runtime adap-
tation and reconfiguration are achieved by using the knowl-
edge documented in variability models. Wolfinger et al.
use the runtime reconfiguration and adaptation mechanism
based on their own plug-in platform, which is implemented
on the .NET platform.

In addition to the focus on runtime binding time in SPL,
the transition itself towards runtime binding has also led
to interest in binding time flexibility, whereby a variation
point can be bound at different times [12, 19, 20]. The
motivation is to maximize reuse of PLArtifacts across a
larger variety of products. For instance, a middleware SPL
could target both resource-constrained devices and high-
end devices, and one variation point in this SPL could be
the choice of a specific security protocol. For resource-
constrained devices, small footprint size is more important
than the flexibility of binding the variation point at runtime
and thus the variation point is bound early with a specific
security protocol. On the other hand, for high-end devices
such flexibility is important and outweighs the incurred
overhead (e.g., memory, performance loss due to indirec-
tion) of runtime binding of that variation point and thus the
same variation point is bound at runtime depending on po-

tential security threats or communication/throughput goals.
Indeed, current research has proved the feasibility of imple-
menting binding time flexibility, by using design patterns to
make the variation points explicit and aspects to modularize
binding time-specific code [12].

Although the relevance of binding time is well acknowl-
edged [17], a concrete method for selection of the appropri-
ate one and related to specific mechanisms is still missing.
Such a method could leverage well-established practices in
SPL and RTA, thus helping to explore their synergies.

Bindig time flexibility has increased the importance of
models in RTA and SPL, e.g., DSPLs. For example, at ear-
lier binding time, it is also important to model context in
a more explicit and precise way, so that a decison about
binding time can be made. Although acknowledged by tra-
ditional Domain Analysis, this has been represented infor-
mally and implicitly by the domain engineer. Conversely,
in RTA, at later binding times, the decision model and con-
text are still needed to decide on adaptation. Accordingly,
for example, recent research also leverages the use of deci-
sion models at runtime [11]. Nevertheless, there remains the
challenge of improving reasoning over this model at run-
time. Conversely, the development of Reference Architec-
ture in RTA could benefit from well established Domain En-
gineering approaches in SPL. This will help to discipline the
process and leverage tested practices for building reusable
artifacts. In particular, modern SPL component-based de-
velopment processes such as Kobra [5] have features such
as hierarchy model composition and refinement, and these
could be enhanced with quality descriptions to be leveraged
in RTA, thus helping to tame complexity.

The commonality among some models between SPL and
RTA, the flexibility of binding time, and the blurredness of
goals suggest that a holistic development process, explor-
ing the synergies between SPL and RTA, would be bene-
ficial to both domains. Particularly from the viewpoint of
the RTA domain, there is still a general lack of appropriate
engineering approaches. Accordingly, Adler et al. [2] intro-
duced a classification with respect to the maturity of RTA
approaches in three different evolution stages. In the state

VaMoS'09

14

of the practice, adaptation is usually used implicitly, with-
out dedicated models at development time or even at run-
time (evolution stage 1). In the current state of the art some
approaches emerged which use distinct models for variabil-
ity and decision modelling (evolution stage 2). This natu-
rally helps coping with the high complexity of adaptive sys-
tems by making them manageable, i.e., by supporting the
modular and hierarchical definition of adaptation enabling
the model-based analysis, validation, and verification of dy-
namic adaptation. The existence of a dedicated methodol-
ogy enabling developers to systematically develop adaptive
systems is considered as a further evolution step (evolution
stage 3).

A holistic model-based engineering approach would nat-
urally also benefit from the whole range of typical gains
brought by model-driven engineering (MDE) approaches
(i.e. validation, verification, reuse, automation). As for any
other software engineering approach it is particularly pos-
sible to analyze and to predict the quality of the adaptation
behaviour to enable systematic control of the development
process. In our opinion, the combination of SPL and RTA
approaches could bear a significant step in this direction.
Further, the benefits of the combination would also include
more consistent handling of variability across the binding
timeline and leverage of modelling and analysis techniques
across both domains.

6. Related work

Indeed, describing potential synergy between variability
in SPL and RTA is not new. For instance, each system con-
figuration can be considered as a product in a SPL in which
the variability decisions necessary to instantiate the prod-
uct are made at run-time [25]. Cheng et al. [13] present
a roadmap for engineering Self-Adaptive Systems, where
they suggest that technologies like: model driven develop-
ment, AOP, and SPL might offer new opportunities in the
development of self-adaptive systems, and change the pro-
cesses by which these systems are developed. In contrast
to these works, we explore this synergy in the context of
our concrete experience in the SPL and DAS domains and
highlight some points that lead to further research.

Gokhale et al. [24] propose an initial approach for in-
tegrating Middleware with SPL, focusing on the use of
feature-oriented programming and model-driven develop-
ment tools for uncovering and exploring the algebraic struc-
ture of middleware and handling runtime issues such as QoS
and resource management. Classen et al. [14] identify lim-
itations in domain engineering in current SPL research and
propose a research roadmap for the integration of SPL and
RTA, based on the key concepts of context, binding time,
and dynamism. Similarly to these works, we highlight QoS
challenges and the role of models, in particular context and

decision model; in contrast, we additionally discuss chal-
lenges regarding binding time flexibility.

The availability of decision models at runtime is re-
garded as an essential property of the synergy between SPL
and RTA. Anastasopoulos et al. [4] investigate the benefits
of applying SPL in the context of the Ambient Assisted
Living domain [37], in which systems have to be highly
adaptive, proposing a roadmap for its use. As in our work,
they identify the need to focus on runtime variability and
to provide an execution environment that enables manage-
ment and automatic resolution of decision models at run-
time. Their work additionally proposes corresponding reali-
sation techniques and a component model. Cetina et al. [11]
propose a method for developing pervasive applications us-
ing SPL concepts and techniques. The decision model is
represented at runtime and queried during system reconfig-
uration in order to address new user goals. Differently, we
also identify challenges on achieving binding time flexibil-
ity.

7. Conclusion

We performed a comparative study of variability man-
agement between SPL and RTA with the aim of identify-
ing synergy points and cross-fertilization opportunities that
could lead to enhanced variability management in both do-
mains. Based upon meta models for each of the two do-
mains and a set of general classification criteria, we iden-
tified and discussed potential synergy points. From a SPL
point of view, potential synergies comprise the specifica-
tion and management of QoS and dependability properties,
a more systematic approach towards variable binding time,
and the formalization of context information and its relation
to product variants and their properties. From the perspec-
tive of RTA, well-established variability modelling in the
SPL domain promises to be a valuable basis for the defini-
tion of appropriate models at runtime as they are required in
adaptive systems. We believe that addressing these synergy
points would be best exploited by the definition of a holistic
model-based engineering approach, which we plan to refine
in future work.

Although the comparison criteria used here are rather
high-level, they are useful to structure the discussion and
identify synergy points. Indeed, a more fine-grained com-
parison is needed, so that the two research areas can effec-
tively benefit from each other. However, such a comparison
is outside the scope this paper and is considered as future
work.

Acknowledgements
The authors would like to thank Michalis Anastasopou-

los, the anonymous reviewers, and the members of the SPG
group at Federal University of Pernambuco for providing

VaMoS'09

15

valuable feedback. This research has been partially funded
by the German Federal Ministry of Education and Research
(BMBF) in the context of the VIERforES project.

References

[1] SPLC’09. Call for Participation. http://www.sei.
cmu.edu/splc2009/files/SPLC_2009_Call.
pdf. Last access, Nov. 2008.

[2] R. Adler, D. Schneider, and M. Trapp. Development of safe
and reliable embedded systems using dynamic adaptation.
In 1st Workshop on Model-driven Software Adaptation M-
ADAPT’07 at ECOOP 2007, pages 9–14, Berlin, 2007.

[3] M. Anastasopoulos and C. Gacek. Implementing product
line variabilities. In SSR ’01: Proceedings of the 2001 sym-
posium on Software reusability, pages 109–117, New York,
NY, USA, 2001. ACM.

[4] M. Anastasopoulos, T. Patzke, and M. Becker. Software
product line technology for ambient intelligence applica-
tions. In Proc. Net.ObjectDays, pages 179–195, 2005.

[5] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Lait-
enberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-based product line engineering with
UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[6] J. Bayer, O. Flege, and C. Gacek. Creating product line
architectures. In Third International Workshop on Software
Architectures for Product Families - IWSAPF-3, pages 197–
203, 2000.

[7] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. Pulse: a methodol-
ogy to develop software product lines. In SSR ’99: Proceed-
ings of the 1999 symposium on Software reusability, pages
122–131, New York, NY, USA, 1999. ACM.

[8] M. Becker, B. Decker, T. Patzke, and H. A. Syeda. Run-
time Adaptivity for AmI Systems - The Concept of Adaptivity.
IESE-Report; 091.05/E. 2005.

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005.

[10] N. Bencomo, P. Grace, C. Flores, D. Hughes, and G. Blair.
Genie: Supporting the model driven development of reflec-
tive, component-based adaptive systems. In ICSE 2008 -
Formal Research Demonstrations Track, 2008.

[11] C. Cetina, J. Fons, and V. Pelechano. Applying software
product lines to build autonomic pervasive systems. In
SPLC ’08: Proceedings of the 12th International on Soft-
ware Product Line Conference, pages 117–126. IEEE Com-
puter Society, 2008.

[12] V. Chakravarthy, J. Regehr, and E. Eide. Edicts: imple-
menting features with flexible binding times. In AOSD ’08:
Proceedings of the 7th international conference on Aspect-
oriented software development, pages 108–119, New York,
NY, USA, 2008. ACM.

[13] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors. Software Engineering for Self-Adaptive
Systems, 13.1. - 18.1.2008, volume 08031 of Dagstuhl Sem-
inar Proceedings. IBFI, Schloss Dagstuhl, Germany, 2008.

[14] A. Classen, A. Hubaux, F. Saneny, E. Truyeny, J. Vallejos,
P. Costanza, W. D. Meuter, P. Heymans, and W. Joosen.
Modelling variability in self-adaptive systems: Towards a
research agenda. In Proc. of the 1st Workshop on Mod-
ularization, Composition, and Generative Techniques for
Product Line Engineering held as part of GPCE08, Octo-
ber 2008.

[15] P. Clements and L. Northrop. Software Product LinesPrac-
tices and Patterns. Addison-Wesley, Reading, MA, 2002.

[16] C. F. Cortes, G. Blair, and P. Grace. An adaptive middleware
to overcome service discovery heterogeneity in mobile ad
hoc environments. IEEE Distributed Systems Online, 2007.

[17] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[18] A. Dey, D. Salber, and G. Abowd. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-
aware applications. Human-Computer Interaction 16 (2),
pages 97–166, 2001.

[19] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser. Captur-
ing timeline variability with transparent configuration envi-
ronments. In Proc. of International Workshop on Software
Variability Management, 2003.

[20] E. Dolstra, G. Florijn, and E. Visser. Timeline variability:
The variability of binding time of variation points. In Proc.
of Workshop on Software Variability Management, 2003.

[21] P. Fernandes and C. Werner. Ubifex: Modeling context-
aware software product lines. In Proc. of 2nd International
Workshop on Dynamic Software Product Lines, 2008.

[22] P. Fernandes, C. Werner, and L. G. P. Murta. Feature mod-
eling for context-aware software product lines. In SEKE,
pages 758–763, 2008.

[23] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin.
Supporting adaptive multimedia applications through open
bindings. In CDS ’98: Proceedings of the International
Conference on Configurable Distributed Systems, page 128,
Washington, DC, USA, 1998. IEEE Computer Society.

[24] A. Gokhale, A. Dabholkar, and S. Tambe. Towards a holistic
approach for integrating middleware with software product
lines research. In Proc. of the 1st Workshop on Modulariza-
tion, Composition, and Generative Techniques for Product
Line Engineering held as part of GPCE08, October 2008.

[25] H. Gomaa and M. Hussein. Model-based software design
and adaptation. In SEAMS ’07: Proceedings of the 2007 In-
ternational Workshop on Software Engineering for Adaptive
and Self-Managing Systems, page 7, Washington, DC, USA,
2007. IEEE Computer Society.

[26] P. Grace, G. Blair, C. Flores, and N. Bencomo. Engineer-
ing complex adaptations in highly heterogeneous distributed
systems. In Invited paper at the 2nd International Con-
ference on Autonomic Computing and Communication Sys-
tems, September 2008.

[27] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dy-
namic software product lines. Computer, 41(4):93–95,
2008.

[28] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Us-
ing product line techniques to build adaptive systems. In
SPLC 2006: Proceedings of the 10th International Software
Product Line Conference, pages 141–150, Washington, DC,
USA, 2006. IEEE Computer Society.

VaMoS'09

16

[29] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappen-
berger, P. Smith, and K. Beven. An experiment with reflec-
tive middleware to support grid-based flood monitoring. To
appear in Wiley Inter-Science Journal on Concurrency and
Computation: Practice and Experience.

[30] D. Hughes, P. Greenwood, G. Coulson, G. Blair, F. Pappen-
berger, P. Smith, and K. Beven. An intelligent and adaptable
flood monitoring and warning system. In Proc. of the 5th
UK E-Science All Hands Meeting (AHM06), 2006.

[31] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA, 1991.

[32] C. W. Krueger. Product line binding times: What you don’t
know can hurt you. In SPLC, pages 305–306, 2004.

[33] J. Lee and K. C. Kang. A feature-oriented approach to devel-
oping dynamically reconfigurable products in product line
engineering. In SPLC ’06: Proceedings of the 10th Inter-
national on Software Product Line Conference, pages 131–
140, Washington, DC, USA, 2006. IEEE Computer Society.

[34] G. Lenzini, A. Tokmakoff, and J. Muskens. Managing trust-
worthiness in component-based embedded systems. Elec-
tron. Notes Theor. Comput. Sci., 179:143–155, 2007.

[35] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing adaptive software. Computer, 37(7):56–
64, 2004.

[36] D. Muthig. A Lightweight Approach Facilitating an Evolu-
tionary Transition Towards Software Product Lines. Fraun-
hofer IRB Verlag, Stuttgart, 2002.

[37] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm. Liv-
ing assistance systems: an ambient intelligence approach.
In ICSE ’06: Proceedings of the 28th international confer-
ence on Software engineering, pages 43–50, New York, NY,
USA, 2006. ACM.

[38] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[39] C. P. Shelton, P. Koopman, and W. Nace. A framework
for scalable analysis and design of system-wide graceful
degradation in distributed embedded systems. In Words
2003: Proceedings of the Eighth International Workshop
on Object-Oriented Real-Time Dependable Systems, pages
156–163, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[40] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques: Research articles. Softw.
Pract. Exper., 35(8):705–754, 2005.

[41] M. Trapp. Modeling the Adaptation Behavior of Adaptive
Embedded Systems. Verlag Dr. Hut, Munich, 2005.

[42] R. Wolfinger, S. Reiter, D. Dhungana, P. Grunbacher, and
H. Prahofer. Supporting runtime system adaptation through
product line engineering and plug-in techniques. In Seventh
International Conference on Composition-Based Software
Systems (ICCBSS 2008), pages 21 – 30, 2008.

[43] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006. ACM.

VaMoS'09

17

VaMoS'09

18

Evolving a Software Product Line Reuse Infrastructure:

A Configuration Management solution

Michail Anastasopoulos,
Dirk Muthig

Thiago Henrique Burgos de Oliveira 1,2,
Eduardo Santana Almeida 1,

 Silvio Romero de Lemos Meira 1,2Fraunhofer Institute for
Experimental Software Engineering

(IESE)
1Recife Center for

Advanced Studies and systems - C.E.S.A.R
michail.anastasopoulos@iese.fraunhofer.de, 2Federal University of Pernambuco - UFPE

dirk.muthig@iese.fraunhofer.de {thbo,esa,silvio}@cesar.org.br

Abstract

Configuration Management procedures are crucial
for controlling the evolution of software products. In
the context of Software Product Lines this becomes
even more important since the development process
consists of two parallel activities – Core asset and
product development – and hence is more complex.
This paper defines a set of Configuration Management
procedures for Software Product Lines as well as an
automation layer that facilitates their implementation.

1. Introduction

Product Line Engineering (PLE) is a paradigm on
the rise that comes with true order-of-magnitude
improvements in cost, schedule and quality [3]. For
achieving these improvements it is necessary that an
initial investment is made in terms of establishing
systematic reuse. Naturally every organization expects
that such an investment (a) amortizes quickly and (b)
persists during the evolution of a product line.

Amortization is supported by solutions, such as the
approach in [1], that address the proactive planning of
product line reuse, so that expected benefits and their
timing are clarified in advance. Or, there are
techniques [2] that support the development for reuse
in a product line context so that reusable artifacts are
easier to implement and reuse. However, when it
comes to evolution of a product line over the time,
there is currently no consensus regarding the approach
to be followed.

1.1. Problem Statement
Currently, there is no established solution that

addresses all three essential product line activities
identified in [3]. These activities are:
� Core Asset Development (also known as Family

Engineering): In this activity the core assets are
being developed and evolved, that is the assets to
be reused across the different members of the
product line.

� Product Development (also known as Application
Engineering): In this activity core assets are reused,
that means that so-called core asset instances are
being derived and then evolved. In addition
product-specific assets are being developed. Reuse
entails configuration, derivation and finally
adaptation. The resulting core asset instances
together with product-specific assets form the
products to be delivered to customers.

� Management: This involves organizational and
technical management. A major issue here is the
definition and monitoring of the processes used for
developing core assets and products. This activity
is crucial for evolution management.
A recent analysis of several industrial product lines

[4] has shown that in most cases Core Asset and
Product Development are separate activities with
separate lifecycles, which run in parallel. If the
interactions between these activities are not enforced
and properly managed the risk of product line “decay”
grows [19, 20, 24]. The latter can be defined as the
aggravating situation, in which core asset reuse
diminishes while the amount of product-specific assets
grows. Such a situation can have several negative side-
effects including the exponential growth of
maintenance effort over time and finally the failure of
a product line effort.

VaMoS'09

19

For the avoidance of product line decay, special
attention must be paid to the Management essential
activity. This paper provides solutions that directly
contribute to that.

1.2. Solution Approach
The solution presented in the following is based on

configuration management, which is an established
management discipline for controlling the evolution of
software systems. Since traditional configuration
management does not address special aspects
pertaining to product lines, a set of extensions are
proposed to fill the respective gaps. The solution is
made up of two components.
� RiPLE-EM: A process model that describes the

roles, activities and flows that are necessary for a
disciplined product line evolution management.

� Customization Layer: An automation layer that (a)
defines basic product line evolution activities, (b)
defines an asset model for the management of core
asset / instance dependencies and (c) automates
many of the manual steps that would be otherwise
necessary if plain configuration management was
used.
As shown in Figure 1 RiPLE-EM builds on top of

the Customization Layer thereby using and
coordinating the basic product line evolution activities
defined therein. The Customization Layer in turn
builds on a Configuration Management Repository and
in particular on the available version control
functionality.

The Customization Layer is part of the PuLSE™
method (Product Line System and Software
Engineering)1 and in particular it belongs to the
PuLSE™-EM technical component (Evolution and
Management), which also defines a process model

1 PuLSE™ is a registered trademark of the Fraunhofer
IESE) in Kaiserslautern, Germany
www.iese.fraunhofer.de/Products_Services/pulse/

similar to RiPLE-EM. The latter takes however a more
configuration management-oriented view, by also
addressing issues of Configuration Identification,
Release and Build Management. Hence this paper aims
at bringing together the RiPLE-EM and the PuLSE™
views.

1.3. Paper structure
The paper is structured as follows: section 2

presents related work, Section 3 presents RiPLE-EM
and section 4 the underlying Customization Layer.
Section 5 discusses the interfaces between the two and
section 6 closes the paper.

2. Related Work

Related work on evolution management for product
lines can be separated in two areas: (a) related work on
process models and (b) related work on technologies.
Normally process models and technologies should be
closely related. Process models should be genuine
reflections of the evolution processes that are
supported by technologies. However such a
contribution is not yet available in the community and
therefore the separate observation of the two areas is
necessary.

2.1. Process Models

Besides PuLSE-EM, which was discussed in section
 1.2, there are several other process models for PLE
such as KobrA [5] and FAST [6] but as mentioned in
the introduction, there is no established solution
regarding evolution management processes. Most of
the existing process models address PLE, but do not
provide any detailed activity flow for conducting and
coordinating evolution activities.

The research projects ESAPS [21] and CAFÉ [22]
also discussed evolution management approaches
mainly in terms of change management and change
impact analysis. Yet they do not provide any kind of
workflow, or suggested activities. The process model
proposed by this paper differs from these existing
approaches by defining workflows with activities,
steps to accomplish each activity, roles and work
products. Apart from that RiPLE-EM also provides
concrete process guidelines to some of its activities.

Some isolated guidelines on how to conduct
evolution management activities and procedures are
available in different papers, mainly in the form of
experience reports such as [23] and [24]. However,
there is no compilation of these guidelines and best
practices in the form of a process model definition,
which helps in enabling the coordination of these

RiPLE-EM
Process Model Layer:

Workflows, activities, steps,
roles and work products

Customization
Layer

Customization Layer:
Basic product line evolution

activities and their automation

Configuration
Management
Repository

Configuration Management Repository:
Storage and controlled evolution of

versioned artifacts

Figure 1: Solution Layers

VaMoS'09

20

activities in a uniform way, and providing a common
understanding of the proposed activities execution.

2.2. Technologies

Among the different product line implementation
technologies there are currently two major tool-based
solutions that explicitly discuss the evolution of
product lines. However these technologies do not
address the full-fledged product line scenario
characterized by the interplay of core asset and product
development.

The first solution is available through the GEARS
software production line [7]. The latter is defined [8]
as a special kind of product line, in which product
development is not in the focus of the product line
infrastructure. GEARS provides the methodology and
tools for the specification of variability as well for the
definition, realization and instantiation of the
respective core assets. However, once generated, the
instances of core assets are transient work products and
GEARS does not deal with their evolution. If changes
are necessary they are performed only within the
infrastructure. Instances can then be re-generated.
GEARS is an interesting solution when the separation
of core asset and product development is not necessary
or feasible. This can be the case in smaller or medium-
sized organizations. Apart from that, and although
GEARS supports integration with various
configuration management systems, the mechanisms of
storing and retrieving versioned data have not been
published yet. The approach presented in this paper
automates in a well-defined way a series of
configuration management operations for controlling
core assets and instances.

GEARS falls into the category of variability
management environments. The Decision Modeler [2],
pure:variants [10] or COVAMOF [11] are comparable
solutions. Nevertheless those solutions do not address
the evolution issues explicitly and therefore they can
be used only in conjunction with a configuration
management solution (more on that in section 4.6)

The second solution comes with the KOALA
component model and according infrastructure [9].
This solution also addresses a special kind of product
line termed product population. In this case the reuse
infrastructure consists of KOALA components, which
are highly reusable core assets according to the
principles of component-based development [12]. A
product based on KOALA is derived through
composition of KOALA components. Since the
derived products can be very dissimilar one speaks of
product populations instead of product lines. Hence
KOALA components can be seen both as core assets
and instances depending on the timing of component

composition. KOALA does not need to address the
issue of coordination between core asset (i.e.
component) development and product development
(i.e. component composition). That is due to the fact
that the application of component-based development
principles in KOALA achieves a very high reuse level.
The latter makes the adaptation of components
unnecessary. Therefore change requests from the
products can be directly propagated to the component
development thereby yielding new versions of
components. KOALA is therefore a very powerful
approach. However it can be applied only at the
component design and implementation level. This is
the difference to the solution presented in this paper,
where the management of core assets in general (i.e.
pertaining to other lifecycle phases as well) is
supported.

Apart from GEARS and KOALA, which are
modern state-of-the-practice approaches in the product
line community, there is also a set of research
prototypes from the configuration management
community that, although address evolution issues of
product lines, did not fully make it to industrial
practice. VOODOO [13], ICE [14], Adele [15] and the
ShapeTools [16] are representative examples. The
major enhancements of the solution presented in this
paper against these approaches are (a) the support for
the coordination between core asset and product
development as well as (b) the provision of a product
line evolution front end on top of an encapsulated
configuration management system.

A research prototype with the most similarities to
the automation solution of this paper is the Product
Line Asset Manager [17]. The latter addresses most of
the issues discussed in section 1 including the
definition of roles, processes and models for product
line evolution management. The automation solution
of this paper takes a similar approach but delves
deeper into the instrumentation of the underlying
configuration management system and into the
definition and usage of the asset model, which shows
the relationships between core assets and instances.

3. RiPLE-EM

In this section, the process model for evolution
management, called RiPLE-EM (RiSE2 Product Line
Engineering – Evolution Management) is presented.
For the reason of simplicity, we use the word
“process” instead of “process model” in the following.
RiPLE-EM process specifies roles, activities and flows

2 RiSE – http://www.rise.com.br

VaMoS'09

21

required for the management of evolution in a product
line context.

3.1. Motivation

Processes are an important aspect of evolution
management. In the product line context, where the
interplay between Core Asset and Product
development increases the complexity, process models
are necessary to give concrete guidance to the product
line stakeholders. RiPLE-EM aims at providing a
semi-formal process that (a) integrates and coordinates
the Customization Layer operations and that (b)
surpasses that, by defining further activities for
configuration identification, change management,
build management and release management. The latter
are fundamental functions of traditional configuration
management. Hence RiPLE-EM adapts these functions
to the context of product lines.

3.2. Process Model

The main characteristic of RiPLE-EM is that it is
focused both on core asset and product development,
in a release-oriented way. By release oriented, we
mean that for each core asset or product release, a new
RiPLE-EM flow is started and followed.

RiPLE-EM has two different flows, one for each of
the two essential activities of Core Asset Development
(CAD) and Product Development (PD), discussed in
section 1. Figure 2 gives an overview of RiPLE-EM.

RiPLE-EM consists of the following sub-areas,
each one with different activities, described in the
following subsections.
• Configuration Identification: This area identifies

the artifacts to be put under evolution control. It is
decided which artifacts will be developed as core
assets, instances, or product specific assets.

• Change Management: This sub-area comprises
all activities related to the change control of the
configuration items. It comprises activities like
requesting and analyzing changes and
propagations.

• Build Management: All activities related to build
generation are under this sub-area, which defines

different types of builds (private system build,
integration build and release build) and provides
the steps to accomplish the build generation,
taking in consideration variability and
configuration matters.

• Release Management: This sub-area comprises
both release planning and execution for core assets
and products.

• Support activities: Further activities such as
audits and status reporting.

Figure 3 illustrates the usage of RiPLE-EM in a
given moment when two core assets and two products
are being developed. For the proper management of
the evolution, each release (of the core asset or the
product) follows the RiPLE-EM respective flow (CAD
for core assets and PD for products).

3.2.1. Core Asset and Product Development

As mentioned before RiPLE-EM is separated in two
different flows, the RiPLE-EM for Core Asset
Development (RiPLE-EM CAD or simply CAD) and
the RiPLE-EM for Product Development (RiPLE-EM
PD or simply PD). These two flows have similar
macro structure, but the activities inside each flow
have different goals.

RiPLE-CAD focuses on the proper evolution and
release of core assets, including the identification of
items and the release planning of a certain core asset,
change management of those items, build management
when applicable (e.g. code development), and release
execution practices where the core asset is made
available for the product development.

The focus of RiPLE-EM PD is different from
RiPLE-EM CAD. In the configuration identification,
and release planning, assets to be included in the
products are identified and tracked. It has a different
focus in the change management, where assets can be
added, or instantiated from existing core assets; in the
build management, where the product is built, and all
variability decisions resolved; and also in the release
execution, where the product is released and published
and the changes performed in the product release can
be propagated back to core assets base.

The communication of CAD and PD is also
considered, in both directions, in terms of change
propagation. The change propagation request (PR) is

Figure 2: RiPLE-EM overview

Figure 3: RiPLE-EM usage example

VaMoS'09

22

the instrument used to initiate and control the
propagation of changes between core asset and product
development by the management team.

3.2.2. RiPLE-EM for Core Asset Development

As shown in Figure 4, the flow starts with the
configuration identification of the core asset to be
developed. The assets can be of different types, such as
components, architecture, frameworks, requirements
and etc. The configuration identification of the items
that will be developed inside the core asset is followed
by the development itself, supported by the change and
build management activities. The flow finishes with
the release execution of the core asset. The release
planning starts right after the configuration
identification and continues by monitoring the
development and updating the release plan. Finally it
joins the development flow at the moment of the
release execution3. There are also support activities
such as audits that can be performed at any time during
the RiPLE-EM CAD process.

Inside the change management, RiPLE-EM CAD
supports the communication with product development
through propagation requests (i.e. rebase core asset
instances) that can be raised and further analyzed by
the responsible roles. Variability changes (i.e. addition
or removal of variation point) are also handled by a
specific task where guidelines for the change are
proposed. Moreover every change or propagation
request records the rationale for it, providing shared
knowledge. The build management of a core asset is
also impacted by the variability points and options
available inside the core asset, enabling the generation
of pre-configured core asset builds.

Inside each of the CAD activities there are further
flows and documentation regarding the steps to

3 Normally this would require another set of fork and
join nodes in the workflow diagram; however this was
left out for simplicity. The same applies to Figure 5.

accomplish every task, as well as the artifacts,
guidelines and roles associated.

3.2.3. RiPLE-EM for Product Development

RiPLE-EM for PD, as shown in Figure 5, also starts
with the configuration identification and the release
planning for the product. In the latter the release
schedule and schedule dependencies are defined (e.g.
Core assets that are still being developed). The
development activity is again supported by change and
builds management. The latter enable the creation of
product specific assets, or core asset instances for the
product being developed. In the release execution of a
product, activities such as the creation of a release
notes, publication and eventual propagation are
supported by the process.

4. Customization Layer

This section presents the Customization Layer that
provides a set of basic product line evolution
operations by combining functions of traditional
configuration management.

4.1. Motivation

Product line engineering is characterized by
systematic reuse, which in turn requires variability
management. Hence when a product line is to be
evolved with traditional configuration management,
means have to be found for dealing with variability.
Since the configuration management spectrum of
functionality is quite broad, there are several solutions
that support variability management. The typical
solution is provided by the branching and merging
functionality. However it is recognized [16] that
traditional branching and merging is not adequate for
dealing with permanent variations.

The main problem is that the increased numbers of
variations and variation types lead to many
interdependent branches [13]. Although configuration
management systems have normally no problems in

Figure 4: RiPLE-EM CAD flow

Figure 5: RiPLE-EM PD flow

VaMoS'09

23

dealing with a high number of branches, it is the user
that can get easily overwhelmed. This can be due to
various situations such as (a) usage of branches for
purposes other than variability management, (b)
inconsistent branch naming or (c) formation of totally
dissimilar revision graphs for the same kind of
variability. A user that wants to get information –
stored in branches – about variability and evolution has
to filter out all irrelevant data that comes out from the
above situations. And for doing that a user has to
combine information from log files, revision graphs
and the repository layout. Hence the complexity the
user is confronted with grows rapidly.

There are also other configuration management
solutions to the variability problem, for example
through the change and build management
functionalities. However such solutions do not fully
solve the problem. Change management can indeed
define the roles, activities and flows necessary for
dealing with changes in a product line. This is exactly
what the RiPLE-EM described in section 3.2 does.
Yet, the enactment of some of these activities entails
the difficulties discussed in the beginning of this
section. Build management (e.g. make files) on the
other hand enables the implementation of product line
configurators. In this case the derivation of products is
well supported however evolution is not addressed.

Finally, another conceivable solution would be the
implementation of new kind of configuration
management system (for example with the help of a
database management system as it is frequently the
case) that fits exactly the needs of product line
engineering. Yet the adoption of such a solution could
be questionable since organizations have typically
invested a significant amount of effort and budget in
acquiring, learning and using a standard configuration
management system.

Hence in this paper we propose a solution that
closes the gap between product line engineering and
traditional configuration management through
abstraction and encapsulation. Abstraction enables the
definition of a product line evolution front-end with
the evolution operations needed in product line
engineering, and encapsulation provides for the
implementation of these operations through automated
combination of low-level configuration management
primitives.

4.2. Product Line Evolution Elements

Figure 6 illustrates the fundamental elements of
product line evolution management and their relations.
In other words the figure shows the concepts a product
line engineer (i.e. core asset or product engineer) uses
during evolution of a product line:

• Core Asset: A core asset is defined as a reusable
asset that is developed in Core Asset development
and reused many times during product
development. A core asset may contain other core
assets.

• Instance: An instance is defined as copy of a core
asset that is reused (i.e. configured and adapted) in
the context of a product during product
development. An instance may also contain other
instances.

• Instantiation: An instantiation is defined as the act
of resolving (fully or partially) the variation points
contained in a core asset thereby yielding an
instance of the core asset that can be then adapted
in a product-specific way.

As shown in Figure 6 every core asset and every
instance are assets of the product line and that means
that they are configuration items that can be evolved
(i.e. versioned) over time. Moreover they have to
encapsulate a physical artifact, a file or a directory.

Figure 6 also implies that every instantiation is an
asset and hence a configuration item as well. The idea
is (a) that an instantiation should describe what the
product engineer did when he derived an instance and
(b) that the way a given instance is derived from a core
asset may change over time. This happens when the
variation points of core assets change. For example a
variation point that allowed three alternatives may
evolve to allow only two alternatives. In such a case
the existing instances of the core asset may have to be
revisited and eventually re-instantiated. The latter leads
to a new version of the according instantiation object.
Finally a new version of the according instance is
created. In this way the model enhances the
consistency between core assets, instantiations and
instances over time.

The model presented in Figure 6 can be nicely
integrated with variability management models (e.g.

Figure 6: Elements of product line evolution

VaMoS'09

24

[25] or [26]) that introduce concepts such as variation
point, decision, constraint etc. Yet this exceeds the
context of this paper.

4.3. Product Line Evolution Operations

The model of Figure 6 presents the basic elements
of product line evolution. The Customization Layer
provides the operations necessary for creating and
manipulating instances of this model.

The operations currently supported by the
Customization Layer are the following. For simplicity
the detailed signatures are left out at this point.
1. add-core-asset: Create a core asset from an artifact

(file or directory) and add it to the configuration
management repository.

2. show-core-assets: Given a location in the
configuration management repository (or the
location defined as standard if none is passed), it
shows all core assets.

3. show-instance-diff: Given a core asset, check
whether its instances have changed since their
derivation from the core asset

4. integrate: Given a core asset and one of its
instances, mark the last change made to the core
asset as a feedback from the instance to the core
asset

5. instantiate-core-asset: Given a core asset create an
instance of the core asset. The instance is basically
a copy of the core asset where all or a part of the
core asset variation is resolved. The
Customization Layer however does not enforce
resolving any variability. It simply creates a copy
and assumes that some kind of development with
reuse takes place during the copy operation or
afterwards.

6. show-instances: Given a core asset or the
complete product line, show the current instances

7. show-core-diff: Given an instance, check whether
its core asset has changed since the derivation of
the instance.

8. rebase: Given an instance mark the last changes
made to the instance as a feed-forward from the
core asset of the instance to the instance itself.

Commands 1 to 4 are meant for usage by Core
Asset Engineers while commands 5 to 8 are meant for
Product Engineers.

4.4. Configuration Management

For realizing the operations of section 4.3 the
Customization Layer encapsulates standard
configuration management functionality. The usage of
standard functionality has been chosen intentionally
for enabling the usage of the Customization Layer with

any configuration management system. Clearly, there
are features of some configuration management
systems that could support product line evolution
better. Such features will be discussed in the following
two sections. Apart from the fact that these features do
not solve all problems, taking them for granted would
bind the solution to a specific configuration
management system.

4.4.1. Centralized Configuration Management

Centralized configuration management systems
provide a central repository where the history of all
artifacts is maintained. There are features of such
systems that could be beneficial in a product line
context. For example ClearCase [18] supports a special
kind of branches, called integration and development
streams. Core asset development could be made with
an integration stream whereas Product Development
with various development streams. ClearCase would
then facilitate the propagation of changes. This
however does not solve the problem of many different
types of streams, their relations and the changes among
them than have to be monitored and controlled.
Another example would be Subversion [28] that
enables the assignment of custom properties to
configuration items and also enables the a-posteriori
modification of commit messages. Such features could
be used for marking items as core assets or as instances
or for enriching commit messages with integration or
rebase comments (see section 4.3)

4.4.2. Distributed Configuration Management

Distributed version control systems like Git [27] or
Mercurial [29], take a decentralized approach: Every
user maintains its own repository and changes can be
propagated between repositories over the network. In a
product line context such a distribution of repositories
can be beneficial. Similarly to ClearCase streams there
could be a repository for the core asset development
and several other repositories for the development of
various products. Subsequently these repositories can
push or pull changes among them. Also in this case the
question remains on how to manage the relations and
change events between the different repositories.

4.4.3. Encapsulation of Standard Functionality

The configuration management functionality
required by the Customization Layer is the following:
• Creating configuration items: The Customization

Layer uses this feature when the add-core-asset
command is used. The result is a new
configuration item with the contents of the core
asset and the repository location passed to the
command. A specific commit message is used
every time for separating such a configuration

VaMoS'09

25

items from others created differently. The
Customization Layer creates some configuration
items also during initialization. These are the
predefined repository directories the
Customization Layer uses as root directories for
core assets and instances respectively.

• Branching off configuration items: Branches are
used with the instantiate-core-asset command.
When this command is issued on a core asset the
Customization Layer creates a branch off the core
asset and hence enables the parallel development
of the core asset and the newly created instance.

• Searching the history of configuration items: This
functionality is used with the majority of the
Customization Layer commands. For example
when show-core-assets is issued the
Customization Layer searches the history of the
repository location passed to the command for
entries bearing the special commit message used
by the Customization Layer. Or when show-core-
diff is called the history is repeatedly searched for
comparing version numbers and deducing whether
a change has happened.

• Creating versions: This functionality is used
during integrating and rebasing. In each case
special-purpose versions are created that let the
Customization Layer later deduce that this change
was a feedback or a feed-forward respectively.

4.5. Customization Layer Usage Scenarios

The Customization Layer can be used for two
scenarios. The primary scenario is the controlled
evolution of core assets, instances and their
dependencies. With the Customization Layer product
line engineers can continuously keep an overview over
all core assets, instances and changes taking place
therein. Yet the Customization Layer does not support
the semantic interpretation of changes. The latter can
be very challenging in a product line context since core
assets and instances cannot be easily compared. For
minimizing the effort of the interpretation the
Customization Layer enables finding out quickly that a
change happened so that an analysis can be initiated
early.

The second scenario the Customization Layer can
be used for is development for reuse. Typically core
assets are made reusable through low-level reuse
mechanisms of programming languages (e.g. template
meta-programming, preprocessor directives, class
inheritance) or high-level mechanisms of component
technologies (e.g. parameterization, dependency
management, extension points). Configuration

Management can be also used for development for
reuse; however in a rather primitive way.

For example a core asset supports two operating
systems (Windows and Linux). The core asset engineer
may decide to implement this core asset as a directory
that has two branches, the Windows (e.g. as the main
branch) and the Linux branch. During instantiation the
application engineer would select one of the branches
(configuration step), check-out the latest revision in the
branch (derivation step) and then introduce his
product-specific changes (adaptation step). The
Customization Layer can support this scenario:
instantiate-core-asset can be called on the core asset
module. That would create a copy of the module with
the two branches and their latest revisions.
Subsequently this copy, which makes up the instance
of the core asset, can be “configured” by deleting for
example the Windows branch, if a Linux instance is
required.

4.6. Interaction with Variability Management

Examining the relation between the Customization
Layer and a variability management technology like
GEARS, the Decision Modeler or pure:variants is
important. While Customization Layer focuses on the
evolution of products variability management
technologies focus on the derivation of products. With
variability management a domain space is typically
built-up that specifies the decisions an application
engineer has to make when deriving a product or parts
of a product. Decisions in the domain space are
mapped to logic that delivers the assets accordingly.
Hence when a product is to be derived a set of
decisions are being made and then the according logic
is executed that selects, generates, transforms, deletes
etc. assets. The result is the assets that make up a
product or parts of a product.

The first possible interaction between the
Customization Layer and variability management is
hence the domain space and the logic creation step.
Whenever a core asset is defined within the variability
management environment the add-core-asset command
can be called for storing the core asset accordingly in
the configuration management repository.

The second possible interaction is the derivation
step. During such an interaction the variability
management calls the Customization Layer. For each
core asset being processed by the logic it calls the
instantiate-core-asset command with the core asset as
first argument and the instance as second argument.
The second argument is provided if an instance is
delivered by the variability management (e.g. through
automated transformation of the core asset). If no
second argument is provided the Customization Layer

VaMoS'09

26

creates a copy of the core asset and marks that
accordingly. The result is that after product derivation
the Customization Layer has stored instances in a
controlled way and evolution monitoring can then
start.

Finally the Customization Layer can also call a
variability management environment in case core
assets or instances change. In that way the variability
management environment can automatically change its
domain space or logic. If for example an instance is
created only with the Customization Layer the
variability management environment could be notified
so that the domain space and the according logic can
be revisited.

Given the example in the previous paragraph it is
also conceivable that the Customization Layer is used
in a stand-alone mode; that is without any interaction
with a variability management environment. Indeed the
Customization provides basic means for variability
management by enabling the creation and overview
over core assets and instances. However it does not
provide any means for logical dependencies, in terms
for example of constraints, between core assets. This is
typical application field of variability management
environments. Hence the interaction between
Customization Layer and a variability management
environment is highly recommended.

5. Interfaces between RiPLE-EM and CL

To address a complete solution regarding evolution
management in Software Product Lines, RiPLE-EM
and the Customization Layer have integration points
where both solutions can be combined to maximize the
benefits. Each Customization Layer operation, listed in
section 4.3, is triggered by a RiPLE-EM task or
activity. The interfaces between the solutions are
described next, and summarized in Figure 7.
• add-core-asset: This situation may occur in the

change management flow, from both CAD and
PD, when the need for a core asset creation is
identified through change request analysis or
through the configuration identification.

• show-core-assets: The need to visualize the
available core assets may arise from the activity of
identifying the configuration of a certain product
which will re-use the core assets, from the
instantiation of a core asset or from the
propagation of changes.

• show-instance-diff: Any time a change
propagation request is to be opened, it is important
to know beforehand the changes made in the
instance, in order to verify the applicability of the

propagation. This operation is also triggered in the
analysis of a propagation request.

• integrate: Every time the propagation is realized,
this operation is triggered to mark that the core
asset was update with changes from a specific
instance.

• instantiate-core-asset: When an instance needs to
be created during PD configuration identification
or PD change management this operation is
triggered.

• show-instances: Given a certain core asset, it is
always interesting to know which product have an
instance of that asset, specially for the purpose of
requesting propagation or simply analyzing a
certain change request.

• show-core-diff: For product engineers, having the
possibility of knowing when the base core asset
for a given instance changed, to rebase it.

• rebase: Similar to the integrate operation. When
the change propagation is realized, this operation
is triggered to mark that the instance base was
updated with changes from the core asset derived.

6. Conclusions

The parallel execution of Core Asset and Product
development activities makes the evolution
management in software product lines much more
complicated than in single systems. A mature and
established technology like configuration management
can provide good support in that direction. Yet
traditional configuration management does not match
the particulars of product lines and its direct usage in a
product line context becomes complicated. In this
report the Customization Layer has been presented, an
automation layer on top of traditional configuration
management that provides the evolution operations

Figure 7: RiPLE-EM and CL integration

VaMoS'09

27

that concern product line engineers but hides away the
underlying complexity.

The report also presented RiPLE-EM, a process
model that in turn sits on top of the Customization
Layer coordinating the activities provided therein and
providing a full set of roles, activities and flows
guiding product line evolution.

Future work in the Customization Layer includes
thorough validations, the incorporation of additional
operations such as structuring (e.g. defining logical
hierarchies of core assets – mapping to the software
architecture), removing (e.g. deleting an instance) or
shifting (e.g. make a core asset out of an instance)
operations and finally the better enforcement of
policies. As for the RiPLE-EM, future work includes
the tailoring of the process to offer better support to
different product line directions (e.g. production lines,
product populations as discussed in section 2.2), as
well as the tailoring for an agile version of RiPLE-EM.

7. References

1. John, Isabel ; Barreto Villela, Karina: Evolutionary
Product Line Requirements Engineering 12th
International Software Product Line Conference, IEEE
Computer Society, 2008, 374-375

2. Yoshimura, Kentaro et al: Model-based Design of
Product Line Components in the Automotive Domain
12th International Software Product Line Conference,
IEEE Computer Society, 2008, 170-179

3. Clements, Paul; Northrop, Linda: Software Product
Lines. Practices and Patterns Boston: Addison-Wesley,
2002.

4. Linden, Frank van der ; Schmid, Klaus ; Rommes,
Eelco: Software Product Lines in Action : The Best
Industrial Practice in Product Line Engineering Berlin :
Springer-Verlag, 2007, section 18.4

5. Atkinson, Colin et al, Component-based Product Line
Engineering with UML: Addison-Wesley, 2001.

6. Weiss, David M.; Lai, Chi Tau Robert: Software
Product-Line Engineering. A Family-Based Software
Development Process Reading : Addison-Wesley, 1999

7. GEARS Homepage, retrieved November 2008 from
www.biglever.com/solution/solution.html

8. Krueger, C. W. 2002. Variation Management for
Software Production Lines. Second international
Conference on Software Product Lines (2002)..

9. van Ommering, R.; van der Linden, F.; Kramer, J.;
Magee, J., "The Koala component model for consumer
lectronics software," Computer , vol.33, Mar 2000

10. Beuche, D. 2008. Modeling and Building Software
Product Lines with Pure::Variants. 12th international
Software Product Line Conference IEEE Computer
Society, Washington, DC, 358

11. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch,
"Modeling Dependencies in Product Families with
COVAMOF," in Proceedings of the 13th Annual IEEE

International Symposium and Workshop on Engineering
of Computer Based Systems, 2006, pp. 299-307

12. Szyperski, Clemens:Component Software. Beyond
Object-Oriented Programming 2nd ed. London :
Addison-Wesley, 2002

13. Reichenberger, C. 1995. VOODOO - A Tool for
Orthogonal Version Management. Lecture Notes In
Computer Science, vol. 1005. Springer-Verlag, London,
61-79.

14. Zeller, A. and Snelting, G. 1997. Unified versioning
through feature logic. ACM Trans. Softw. Eng.
Methodol. 6, 4 (Oct. 1997), 398-441.

15. Estublier, J. 1995. The Adele configuration manager. In
Configuration Management, W. F. Tichy, Ed. Wiley
Trends In Software Series, vol. 2. John Wiley & Sons,
New York, NY, 99-133.

16. Mahler, A. 1995. Variants: keeping things together and
telling them apart. In Configuration Management, W. F.
Tichy, Ed. Wiley Trends In Software Series, vol. 2.
John Wiley & Sons, New York, NY, 73-97.

17. Stefan Bellon and Jörg Czeranski, Thomas Eisenbarth,
Daniel Simon, A Product Line Asset Management Tool,
2nd Groningen Workshop on Software Variability
Management Groningen, Netherlands, December 2004

18. Homepage of Rational ClearCase retrieved November
2008 from www.ibm.com/software/awdtools/clearcase/

19. Liguo Yu and Srini Ramaswamy, "A Configuration
Management Model for Software Product Line,"
INFOCOMP Journal of Computer Science Vol. 5, No.
4, December 2006, pp. 1-8.

20. Davis, A. M. and Bersoff, E. H. 1991. Impacts of life
cycle models on software configuration management.
Commun. ACM 34, 8 (Aug. 1991), 104-118

21. Homepage of ESAPS, retrieved November 2008 from
http://www.esi.es/esaps

22. Homepage of CAFÉ, retrieved November 2008 from
http://www.esi.es/Cafe

23. R. Kurmann. Agile software product line configuration
and release management. Workshop on Agile Product
Line Engineering in the Software Product Line
Conference, 2006

24. Staples, M.; Change control for product line software
engineering, Software Engineering Conference, 2004.
11th Asia-Pacific 30 Nov.-3 Dec. 2004 Page(s):572 –
573

25. Becker, Martin: Anpassungsunterstützung in Software-
Produktfamilien Kaiserslautern : Technische Universität
Kaiserslautern, 2004. (Schriftenreihe / Fachbereich
Informatik, Technische Universität Kaiserslautern; Bd.
19).

26. Muthig, Dirk: A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines Stuttgart : Fraunhofer IRB Verlag, 2002. (PhD
Theses in Experimental Software Engineering; Vol. 11).

27. Homepage of git, retrieved December 2008 from
http://git-scm.com/

28. Homepage of Subversion, retrieved December 2008
from http://subversion.tigris.org/

29. Homepage of mercurial, retrieved December 2008 from
http://selenic.com/mercurial/

VaMoS'09

28

Analysis of Feature Models using Generalised Feature Trees

Pim van den Broek
Department of Computer Science,

University of Twente
P.O. Box 217,

7500 AE Enschede,
The Netherlands

 pimvdb@ewi.utwente.nl

Ismênia Galvão
Department of Computer Science,

University of Twente
P.O. Box 217,

7500 AE Enschede,
The Netherlands

i.galvao@ewi.utwente.nl

Abstract

This paper introduces the concept of generalised
feature trees, which are feature trees where features
can have multiple occurrences. It is shown how an
important class of feature models can be transformed
into generalised feature trees. We present algorithms
which, after transforming a feature model to a
generalised feature tree, compute properties of the
corresponding software product line. We discuss the
computational complexity of these algorithms and
provide executable specifications in the functional
programming language Miranda.

1. Introduction

Feature models are used to specify the variability of
software product lines [1,2]. To calculate properties of
software product lines which are specified by feature
models, such as the existence of products, a number of
approaches exist in the literature where feature models
are mapped to other data structures: Benavides et al. [3]
use Constraint Satisfaction Problems, Batory [4] uses
Logic Truth Maintenance Systems and Satisfiability
Solvers, and Czarnecki and Kim [5] use Binary
Decision Diagrams.

The decision problem to determine whether a feature
model has products is, in general, NP-complete. The
mappings to Constraint Satisfaction Problems and
Logic Truth Maintenance Systems can be performed in
polynomial time, but the resulting problem is also NP-
complete. Although with Binary Decision Diagrams the
problem only requires constant time, the mapping from
feature models to Binary Decision Diagrams takes
exponential time in the worst case.

In a previous paper [6] we have shown how feature
models which consist of a feature tree and additional
constraints can be transformed into trees. Although this
transformation takes exponential time in the worst case
as well, it is feasible when the number of constraints is
small. The resulting trees are more general than feature
trees, since features may have multiple occurrences. In
this paper we study a special subset of those trees,
called generalised feature trees, and show how they can
be used to compute properties of the corresponding
software product lines.

In the next section we briefly describe the feature
models we consider in this paper. In section 3 we
introduce the concept of generalised feature tree and
describe algorithms which deal with commitment to a
feature and deletion of a feature of a GFT. In section 4
we describe how a large class of feature models can be
mapped to equivalent GFTs. In section 5 we show how
this mapping can be used for the analysis of feature
models. In section 6 we present an example and in
section 7 we discuss the computational complexity of
our approach. Throughout the paper, we present
executable specifications of all algorithms in the
functional programming language Miranda [8].

2. Feature models

The feature models we consider in this paper consist
of a feature tree and a set of constraints. A feature tree
is a tree which can have three kinds of nodes: MandOpt
nodes, Or nodes and Xor nodes.

A MandOpt node has two sets of child nodes, called
mandatory and optional nodes respectively. Or nodes
and Xor nodes have 2 or more child nodes. A leaf of the
tree is a MandOpt node without children. Just for the

VaMoS'09

29

ease of writing concise algorithms, we assume the
existence of a special feature tree NIL, which has no
nodes. Each node of a tree has a feature, which is just a
list of characters. All nodes in a feature tree have
different features, and NIL does not occur as subtree of
any feature tree. A product is a set of features. A
constraint maps products to Boolean values; in our
prototype implementation the constraints are restricted
to constraints of the forms "A requires B" and "A
excludes B".

In Miranda, these type definitions are as follows:

tree ::= MandOpt feature [tree] [tree] |
 Or feature [tree] |
 Xor feature [tree] |
 NIL
feature == [char]
product == [feature]
constraint::= Requires feature feature |
 Excludes feature feature
feature_model == (tree,[constraint])

The semantics of a feature model is a set of products
[7]; it consists of those products which satisfy the
constraints from the tree as well as the explicit
constraints.

A product satisfies the constraints from the tree if:
� All its features are features of a node in the tree.
� It contains the feature of the root of the tree.
� For each feature of a node n in the product: if n

is not the root, then the product contains also the
feature of the parent node of n.

� For each feature of a MandOpt node in the
product, the product also contains all features of
its mandatory child nodes.

� For each feature of an Or node in the product,
the product also contains one or more of the
features of its child nodes.

� For each feature of an Xor node in the product,
the product also contains exactly one of the
features of its child nodes.

A product satisfies a constraint "A requires B"
when, if it contains A it also contains B. A product
satisfies a constraint "A excludes B" when it does not
contain both A and B.

3. Generalised feature trees

Features in a feature tree are, albeit implicitly,
required to be all distinct. In the generalisation of
feature trees we consider in this paper, this requirement
is somewhat relaxed. We define a generalised feature
tre (GFT) to be a feature tree whose features, instead of
being required to be all distinct, satisfy the following
two restrictions:

� Restriction 1: when two nodes of a GFT have the
same feature, they belong to different subtrees of
an Xor node.

� Restriction 2: for each node of a GFT, all subtrees
have disjoint semantics.

Before motivating both restrictions, we will first
define the semantics of a GFT. As in the previous
section, this semantics is a set of products. The
definition of the previous section relied on the 1-1
correspondence between nodes and features, which
does not exist here. Therefore, we first define a set of
sets of nodes, instead of a set of products as in the
previous section. This set of sets of nodes contains each
set of nodes which satisfies

� It contains the root of the GFT.
� For each node in the set except the root, the set

also contains its parent node.
� For each MandOpt node in the set, the set also

contains all its mandatory child nodes.
� For each Or node in the set, the set also contains

one or more of its child nodes.
� For each Xor node in the set, the set also

contains exactly one of its child nodes.
The semantics of the GFT is now defined as the set

of products which is obtained from this set of sets of
nodes when each node is replaced by its feature. Where
each feature tree is a GFT, it is seen that this definition
coincides with the definition of the previous section
when the GFT is a feature tree.

Although a GFT may contain multiple occurrences
of a feature, we do not want multiple occurrences of
features in products. This is the motivation of the first
restriction above; it prevents multiple occurrences of
features in products.

In a feature tree, different subtrees of a node do not
contain equal features; this means that the semantics of
these subtrees are disjoint. For a GFT, different
subtrees of a node may contain equal features; however,
we still want the semantics of these subtrees to be
disjoint, as is expressed by the second restiction above.
The reason for this is that computations might become
inefficient otherwise. For instance, consider a GFT
whose root node is an Xor node which has two subtrees
and suppose these subtrees have N and M products
respectively. When we know that these sets of products
are disjoint we can conclude that the total number of
products is N+M. Otherwise, we have to single out
common products from both sets.

An important property of GFTs which is not valid
for feature trees is that for each set of products there
exists a GFT. Given a set of products, a corresponding
GFT can be constructed as an Xor root node with

VaMoS'09

30

subtrees for each product; each subtree corresponds to a
single product.

In the remainder of this section we present two
algorithms, which deal with commitment to a feature
and deletion of a feature of a GFT, respectively. These
algorithms are generalisations of algorithms for feature
trees which are given in [6].

The first algorithm computes, given a GFT T and a
feature F, the GFT T(+F), whose products are precisely
those products of T which contain F. The algorithm
transforms T into T(+F) as follows:

1. If T does not contain F, T(+F) is NIL, else GOTO 2
2. If F is the feature of the root node of T, T(+F) is T,

else GOTO 3
3. Execute 4, 5 or 6, depending on whether the root of

T is a MandOpt node, an Or node or an Xor Node
4. Determine the unique subtree S which contains F,

determine S(+F) recursively, and replace S by
S(+F). If the root node of S was an optional node,
make the root of S(+F) a mandatory node.

5. Determine the unique subtree S which contains F,
determine S(+F) recursively, and replace T by a
MandOpt node, with the same feature as T, which
has S(+F) as mandatory subtree and all other
subtrees of T as optional subtrees.

6. Determine the subtrees S1,..,Sn which contain F,
determine S1(+F),..,Sn(+F) recursively, and replace
S1,..,Sn by S1(+F),..,Sn(+F). Delete all other subtrees.
If n=1, make the root node of T a MandOpt node,
and its subtree a mandatory subtree.

The second algorithm computes, given a GFT T and
a feature F, the GFT T(–F) whose products are
precisely those products of T which do not contain F.
The algorithm transforms T into T(–F) as follows:

1. If T does not contain F, T(–F) is T, else GOTO 2
2. If F is the feature of the root node of T, T(–F) is

NIL, else GOTO 3
3. Execute 4, 5 or 6, depending on whether the root of

T is a MandOpt node, an Or node or an Xor Node
4. Determine the unique subtree S which contains F

and determine S(–F) recursively. If S is mandatory
and S(–F) = NIL, then T(–F) is NIL. IF S is optional
and S(–F) = NIL delete S from T. If S(–F) � NIL
then replace S by S(–F).

5. Determine the unique subtree S which contains F,
determine S(–F) recursively. If S(–F) � NIL, replace
S by S(–F). If S(–F) = NIL, delete S. If T has only 1
subtree left, make its root node a MandOpt node,
and its child a mandatory child.

6. Determine the subtrees S1,..,Sn which contain F and
determine S1(–F),..,Sn(–F) recursively, and delete

all other subtrees. For i=1,..,n, if Si(–F) = NIL,
delete Si, otherwise replace Si by Si(–F). If T has no
subtrees left, then T(–F) is NIL If T has only 1
subtree left, make its root node a MandOpt node,
and its child a mandatory child.

In [6] we gave an implementation in Miranda of
functions with type definitions

commit :: feature -> tree -> tree
delete :: feature -> tree -> tree

These functions, originally given for feature trees,
need no modification to be applicable to GFTs as well.
The function commit takes a feature F and a GFT T as
arguments, and returns T(+F), as defined above.
Likewise, the function delete returns T(–F).

4. From feature models to generalised

feature trees

In [6] we showed how a feature model which
consists of a feature tree and Requires and/or Excludes
constraints can be transformed into a tree with the same
semantics. Here we will generalise this method to
general constraints, and show that the resulting tree is a
GFT. Suppose we are given a feature tree T and a
constraint C, which is a mapping from P, the set of all
products with features of T to the Boolean values
{True,False}. Find a partition of P such that C is
constant on each part. For each part on which C is True,
find a corresponding GFT, using the algorithms of the
previous section. Finally obtain the GFT whose root
node is an Xor node and which has the GFTs just found
as child nodes. As an example, consider the constraint
C to be "A requires B". Partition P into {P(+B),
P(–A–B), P(+A–B). Here "+A" and "–A" denote
restriction to products where A is present resp. absent.
C is True on P(+B) and P(–A–B) and C is False on
P(+A–B). GFTs for P(+B) and P(–A–B) are T(+B) and
T(–A–B). The resulting GFT has an Xor root node and
T(+B) and T(–A–B) as subtrees. Analogously, if C is
"A excludes B", the new GFT has an Xor root node and
T(–B) and T(–A+B) as subtrees.

The resulting trees are indeed GFTs. Restriction 1 is
satisfied because all generated subtrees have the same
Xor root node as parent node. Restriction 2 is satisfied
because the semantics of the generated subtrees are the
parts of a partition of P, and therefore have no common
features.

In [6] we gave an implementation in Miranda of a
function with type definition

VaMoS'09

31

elimConstr :: feature_model -> tree

The argument of this function is a feature model
which consists of a feature tree and constraints of the
forms "A requires B" and "A excludes B"; the function
returns a corresponding GFT.

5. Analysis of feature models

In this section we show how the algorithms of the
preceding section can be used to analyse feature models
which consist of a feature tree and a number of
constraints. In this implementation the constraints are
restricted to be of the forms the function elimConstr
can handle; these are the forms "A requires B" and "A
excludes B",but other forms might be included as well,
as described in the previous section.

Starting point of the analysis is a feature model
consisting of the feature tree f_tree and the list of
constraints constraints. The first step of the analysis
is the computation of an equivalent GFT gft:

gft :: tree
gft = elimConstr (f_tree, constraints)

The function elimConstr here can be used if all
constraints are of the forms "A requires B" and "A
excludes B"; otherwise, the procedure described in the
previous section should be followed.

In the remainder of this section we describe the
computation of a number of properties of the specified
software product line.

Existence of products

The feature model has products if and only if gft is
not equal to NIL:

has_products :: bool
has_products = gft ~= NIL

Dead features

The dead features of the feature model are the features
which occur in features but do not occur in gft:

dead_features :: [feature]
dead_features
 = features f_tree -- features gft

Here the function features computes a list of all
features of a GFT:

features :: tree -> [feature]
features (MandOpt f ms os)

 = f : concat (map features (ms++os))
features (Or f fts)
 = f : concat (map features fts)
features (Xor f fts)
 = f : concat (map features fts)

Number of products

The number of products of the feature model is

nr_products :: num
nr_products = nrProds gft

where the function nrProds is given by

nrProds :: tree -> num
nrProds NIL = 0
nrProds (MandOpt nm ms os)
 = product (map nrProds ms) *
 product (map (+1) (map nrProds os))
nrProds (Xor nm fts)
 = sum (map nrProds fts)
nrProds (Or nm fts)
 = product (map(+1)(map nrProds fts)) - 1

List of all products

A list of all products of the feature model is

list_of_products :: [[feature]]
list_of_products = products gft

where the function products computes a list of
products of a GFT:

products :: tree -> [[feature]]
products (MandOpt x ms os)
 = map(x:)(f(map products ms ++
 map([]:)(map products os)))
 where
 f [] = [[]]
 f(xs:xss) = [u++v|u<-xs;v<-f xss]
products (Xor x fts)
 = map(x:)(foldl(++)[](map products fts))
products (Or x fts)
 = map(x:)(f(map products fts)--[[]])
 where
 f [] = [[]]
 f(xs:xss) = [u++v|u<-([]:xs);v<-f xss]

Products which contain a given set of features

A GFT whose products are precisely those products
of gft which contain all features from a list
required_features is:

gft2 :: tree
gft2 = gft_req_fts required_features gft

where the function gft_req_fts is defined by:

VaMoS'09

32

gft_req_fts :: [feature] -> tree -> tree
gft_req_fts [] t = t
gft_req_fts (f:fs) t
 = commit f (gft_req_fts fs t)

Minimal set of conflicting constraints

A set of constraints is in conflict with a feature tree
if the feature model consisting of this tree and these
constraints has no products, i.e when gft evaluates to
NIL. A user, confronted with such a conflict, may want
some explanation of this. A solution might be to
provide the user with a smallest minimal set of
constraints that conflict with the feature tree. A minimal
set of constraints is a set which contains conflicting
constraints, but has no proper subset whose constraints
also conflict. A smallest minimal set of conflicting
constraints can be computed by

confl_constr :: [constraint]
confl_constr = smsocc(f_tree,constraints)

where the function smsocc (smallest minimal set of
conflicting constraints) is given by:

smsocc :: feature_model -> [constraint]
smsocc (t,[]) = []
smsocc (t,c:cs)
 = [c], if t2 = NIL
 = [], if set1 = []
 = c:set1, if set2 = [] \/ #set2>#set1
 = set2, otherwise
 where
 t2 = elimConstr (t,[c])
 set1 = smsocc (t2,cs)
 set2 = smsocc (t,cs)

This function, given the original feature model as
argument, returns a list with a minimal set of
conflicting constraints if gft equals NIL; otherwise it
returns the empty list.

Explanation of dead feature

If dead_features, the list of dead features, is
non-empty and contains the feature dead_feature,
the user might want explanation why this feature is
dead. As above, this explanation is a minimal set of
constraints which causes the feature to be dead. It is
given by

expl_dead_ft :: [constraint]
expl_dead_ft
 = explain (f_tree,constraints)
 dead_feature

where the function explain is given by

explain :: feature_model
 -> feature -> [constraint]
explain (t,cs) f
 = smsocc (t2,cs), if t2 ~= NIL
 = [], otherwise
 where
 t2 = commit f t

The arguments of this function are the original
feature model and a feature from the list
dead_features. It returns a minimal set of constraints
which causes the feature to be dead. If the feature does
not belong to dead_features, the empty list is
returned.

6. Example

As an example, consider the feature tree T in Figure
1, which is adapted from [9].

Figure 1. Example feature tree T

In Miranda, the definition of f_tree is

f_tree = MandOpt "SalesScenario"
 [n2,n3] [n1]
n1 = Xor "Payment" [n4,n5]
n2 = MandOpt "AccountManagement"
 [] [n6,n7]
n3 = MandOpt "CustomerOrderManagement"
 [n9] [n8]
n4 = MandOpt "PaymentCard" [] []
n5 = MandOpt "CashOnDelivery" [] []
n6 = Xor "CustomerGroups" [n10,n11]
n7 = MandOpt "CustomerRating" [] []
n8 = MandOpt "CreditCheck" [] []
n9 = MandOpt "SalesProcessing" [] [n12]
n10 = MandOpt "Enterprise" [] []
n11 = MandOpt "Consumer" [] []
n12 = MandOpt "Delivery" [] []

VaMoS'09

33

Our example feature model consists of this feature
tree T and the 2 constraints: "CashOnDelivery excludes
Consumer" and "Enterprise requires Consumer". So the
list constraints is given by

constraints = [c1,c2]
c1 = Excludes "CashOnDelivery" "Consumer"
c2 = Requires "Enterprise" "Consumer"

The GFT gft is given in Figures 2, 3 and 4. It could
have been computed with the function elimConstr,
since both constraints are of the forms "A requires B"
and "A excludes B"; however, we will illustrate the
method to derive it which was given in section 4. If
"Consumer" is present in a product, the constraints are
satisfied iff "CashOnDelivery" is not present. If
"Consumer" is absent in a product, the constraints are
satisfied iff "Enterprise" is also absent. So the set of
products P can be partitioned in such a way that the
parts P(+Consumer–CashOnDelivery) and P(–
Consumer–Enterprise) consist of the products which
satisfy the constraints. Therefore, the equivalent GFT is
given by a new Xor node which has T(+Consumer–
CashOnDelivery) and T(–Consumer–Enterprise) as
subtrees.

Figure 2. generalised feature tree gft, toplevel

Figure 3. T(+Consumer–CashOnDelivery)

Figure 4. T(–Consumer–Enterprise)

The analysis of this example feature model proceeds
as follows:

� has_products evaluates to True.
� dead_features evaluates to ["Enterprise"],

showing that the feature "Enterprise"is dead.
� nr_products evaluates to 40.
� list_of_products evaluates to a list of the 40

products (not shown for brevity).
� if required_features is defined as a list of

features then gft2 evaluates to a GFT which can be
analyzed in the same manner.

� if dead_feature is defined to be "Enterprise"
then expl_dead_ft evaluates to [Requires
"Enterprise" "Consumer"] showing that the
second constraint is on its own responsible for the
deadness of "Enterprise".

Now suppose that an extra constraint
"SalesProcessing requires Enterprise" is added:

constraints = [c1,c2,c3]
c3 = Requires "SalesProcessing"
 "Enterprise"

Now has_products evaluates to False and
confl_constr evaluates to [Requires
"Enterprise" "Consumer", Requires "Sales
Processing" "Enterprise"] which shows that
the second and third constraints together form a
smallest minimal set of constraints that conflict with the
feature tree.

7. Computational Complexity

We have shown in [6] that the decision problem
whether a feature model which is given by a feature tree
and a set of constraints is NP-complete. Therefore, we
cannot hope that the analysis of such a feature model
can be performed in polynomial time in the worst case.
Indeed, the construction of the GFT for the feature
model takes a time which is exponential in the number

VaMoS'09

34

of constraints in the worst case. Also the algorithm for
the computation of a minimal set of constraints which
conflict with the feature tree and the algorithm which
computes the minimal set of constraints which cause a
feature to be dead are exponential in the number of
constraints. However, once the GFT has been
constructed, the algorithms for the existence of
products, the number of products and the list of dead
features are linear in the size of the GFT.

In the special case where the number of explicit
constraints is 0, the intended GFT is the feature tree
without modification. Then has_products belongs to
O(1), and nr_products belongs to O(N). This
certainly outperformes the other analysis methods
mentioned in the introduction, as these methods require
a transformation of the feature tree to another data
structure; in the case of Binary Decision Diagrams this
transformation requires even exponential time in the
worst case. We expect that our method is more efficient
than the other methods also in the case where the
number of constraints is small. For instance, it has been
shown in [6] that nr_products belongs to O(N*2M),
where N is the number of features and M is the number
of constraints. A more detailed comparison is planned
as a future work.

8. Conclusion

We have introduced the concept of generalised
feature trees and have shown how they can be used to
analyse feature models which consist of a feature trees
and additional constraints. Detailed algorithms have
been given in the functional programming language
Miranda. The algorithms are efficient when the
constraints are a small number of "requires" and/or
"excludes" constraints

9. Acknowledgments

This work is supported by the European
Commission grant IST-33710 - Aspect-Oriented,
Model-Driven Product Line Engineering (AMPLE).

10. References

[1] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak and A.S.
Peterson, "Feature-Oriented Domain Analysis (FODA)
Feasibility Study", Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University
(1990).

[2] K. Czarnecki, U. Eisenecker, Generative Programming:
Methods Tools and Applications, Addison-Wesley (2000).

[3] D. Benavides, P. Trinidad and A. Ruiz-Cortés,
"Automated Reasoning on Feature Models", in: O. Pastor and
J. Falcão e Cunha (Eds.): CAiSE 2005, Lecture Notes in
Computer Science 3520, Springer-Verlag Berlin Heidelberg,
2005, pp. 491-503.

[4] D. Batory, "Feature Models, Grammars, and Propositional
Formulas", in: H. Obbink and K. Pohl (eds.): Software
Product Lines Conference 2005, Lecture Notes in Computer
Science 3714, Springer-Verlag Berlin Heidelberg, pp. 7-20,
2005.

[5] K. Czarnecki and P. Kim, Cardinality-based Feature
Modeling and Constraints: A Progress Report, in: Proceedings
of the International Workshop on Software Factories,
OOPSLA 2005, 2005.
http://softwarefactories.com/workshops/OOPSLA-2005/
Papers/Czarnecki.pdf.

[6] P. van den Broek, I. Galvão and J. Noppen, "Elimination
of Constraints from Feature Trees" in: Steffen Thiel and
Klaus Pohl (Eds.), Proceedings of the 12th International
Software Product Line Conference, Second Volume, Lero
International Science Centre, University of Limerick, Ireland,
ISBN 978-1-905952-06-9, 2008, pp. 227-232.

[7] P.-Y. Schobbens, P. Heymans, J.-Chr. Trigaux and Y.
Bontemps, "Generic Semantics of Feature Diagrams",
Computer Networks 51, 2007, pp. 456–479.

[8] D. Turner, Miranda: a non-strict functional language with
polymorphic types, in: Functional Programming Languages
and Computer Architecture, Lecture Notes in Computer
Science Vol 201, J.-P. Jouannaud (ed.), Springer-Verlag,
Berlin, Heidelberg, 1985, pp. 1-16.

[9] H. Morganho, J.P. Pimentão, R. Ribeiro, C. Pohl, A.
Rummler, C. Schwanninger and L. Fiege, "Description of
Feasible Industrial Case Studies", Deliverable 5.1, AMPLE
Project, http://www.ample-project.net/ (2007).

VaMoS'09

35

VaMoS'09

36

����������	
���������
������������
��
�������
�������
����

������
�������
	
�����
 �����
!�
"
#

�����$�
%����
&��
�

�����'��(����	

��
��)����
��)�����
�������

*
�����+����

,
�	�����+	����
,
���	�+-�		�����
,
�����+���	��
./����+��

0�������
1�	���
 ���	����
 �����	
 ����
 2���3
 4�����������

5��	���
)��������
 ��
 �
 ���(����	
)������)
 ���
)�������
 (����-���	

 -�	
 ��
 ����������	
 ���
�����-���
�	
 ��
 �
 �����
 ���
 ���
 ����	���
 �	�
 ��������	
 ����	�+
6	���
)��������
 	����7���
 ���
 ��
 �������
)��������
���
��)�����	
)��������
���(���
��������	
(����
��
	��
������
���
���
��	�+
��
�����	�	�
��	���
���������
 ��
�����	
 ����
������������
���
��
 	����
������	��
 �����	
 ����(�	���
 ��
 ��	�)�	��
 ����
���
��
����
	�
�����-�
	��
���
��	�
)��	����
��	�������	��
)�����+
��
	���
������
��
������
���
	�
��������	
	��
����	��������
 	��	
 �8��	
 -�	����
 	����
)�����
 ���
������	
 ��
 �������
 ���
 �))����	���
 	��
����	��������
 �����
 (��������	���
 	����7���+
 1�
 ����
������
 	��
 (��������	���
 	������
 �8�)���
 ��������
���
�����
�	�
-�����	�+

9 � ������������
	�
����
 �����

����
 ����	

����������
 ������

��
 ����������
 ���
 ��������
 ���
 ������������
 ���
�����������
�
�
���
�
�������
��������
����
����
����
������
 ���
 ��
 ���������
 ���
 ���	����
 ��
 ������
����������
 �������
 ��������
 ����
 �
 �������
 �
 ����
:�;�
������
 ���������
�������
�������
 �����
�����
����
���������
 �
 ���������
 ������
 ����������
 �
 �����
 �
�����������
 �����
 �������������
 ���
 �������������
������
�������
 ��
�������
 :<;�
 :=;�
 ��
����������
�
 ����
 �
 �������
 ����>�
 �����������
 ��
 ������������
$��
 ��
 ���
 ��������
 ������������
 ��
 ���
 �����
 �
���������
 �
 ���
 �������
 ����
 ���
 �������
�������������
 �����������
 ����������
 ���
 �������
������
���
����������
����
��
��������
����
���������
�
 ���
 �������
 ���
 ��������
 �������
 ����
 ������
 :?;�
 ������������
 ��
������
 ����
 ��
 �������
 �����������
���
���
������
�����
 ��
������
�����
���������
 ��
����
 ���������
 �������������
 !�
 ��$��
 ��������
 ����
 ���
���������
 ��
 ����
 �
 �����
 ����
 ��
 �����������
 ��
�������
 #�
 ����������
 ���
 ����������
 ���
 ������"���

���������
 ��
 �������������
 �����������
 :@;
 ��
 ���
�������
��
�������
���
�����
���
����������
������
����
���������
 �����
�����
�������
�������
 ����
���������
#������
���������
��
���������
�
���������
���������
��
��������
 �������
�������
 ����
 �����������
 ���
�����������
 ����
 :A;�
 B�������
 ���
 �������
 ����
 �����
����
 �
 ���	���
 �����
 ��
 �����
 ����
 ���
 ���"������
��������
 �
 �������
 �����
 $����
 ����������
 ��
��������
 ���
 ����������
 �
 �
 �������
 �����
 ����
 ��
�������
���������
 :C;
 ���
 �)�����	
���������
 :D;
���������
��
�������
�
�������
����
�
���
����������
����
 ����
 ���������
 �
 �������
 �������
 �����
 !�
 ����
������
 ��
 �������
 �
 �������������
 ��������
 ����
��������
 ��
 �������
 ���
 ����������
 �
 ������������
��������
 ������
 ���
 �����
 �������������
 ����
 ����
������
!�
 �������
 <�
 ��
 ��������
 ���
 ����
 ��
 ��������

������
���
���
����
����
��
��
�����������
!�
�������
=
��
�������
 ���
����������
 ����
��
 ����
 ������������
!�
�������
?
��
�������
���
�������������
��������
���
��
 �������
 @
 ���������
 �
 ����
 �������$
 ����
 ����
�����������
 ���
 �������
 A
 ��������
 �������
 ���$
 ���
��������
C
���
D
�������
�����
���$
���
��������
���
�����
�������������

% � ����!�����
&���
���
 ��������
����������
 ����
��
������
��'

���������
 ���������
 �����������
 ��
 ��������
 ������
�����
:E;
:�F;	�
���������
�����
��������
���
��������
�����
�������
�
�������
����
��
�
����������
�
�������
���
 ����
 �����������
 �����
 ���
 ����
 �������������
�����
����
�
���
�������������
�������
���
�������
�
����������
 �����'�������
 ��������
 ����������
 ���'
���������
��"����������
���
���
��������
����
�����
��
���$���
 �
 ������
 ��
 �
 ��������
 ���������
 ���
 ���
 �
����������	
����
���������
����
�������
 ����
���
��������
���$�
����
����
��
��
��������

��
 �������
 ���$��������
 ������
 ���
 ���
 �����������
���������
�
������
�����������
������������
�
����
������	
 ���
 �����������
 �����������
 ��������
 �������

VaMoS'09

37

�������
 ����������	�
 �������
���������
 ������
 ����'
������
 �������
 ���������
 �����������
 ����������
 ���'
������
���
����������
���
������
�������
�����
��
���
�������
���
��"����
�����������
���
����
�������
����
����������
�����
�������
���$��
!�
����
�
�����
������
�
������
�����
 �����
 ��
 ������
 ���
 ���������
 ��
 ���
 ��'
������
�������
(����
��������
������
������
�������
�����
�
���
�������
����
��
��
�������
��
�
�������
������
���
��������
���$�������
���
���$
�������
���'
�����������
 ���
�������������
�������
 =
 ���������
 ���
���������
����������
����
������
������
���
����
��
���'
����
 ���
��������������
���
�����
�
 ���
�������������
����
�����
����
��������
������
���
���������

) � ���������
������������
 ��
��������
���������
��
����
�����
��
�����
��
���

����'������
���������
 ��
 :A;�
 ����
����'������
���
���
 ���������
 ����
 �������
 ���
 ����������
 ������
 ��
��������
��
���
��������
���������
 �
�������
���
�������
�
�
�������
����
��
����
��

�������
���
��������
������
����
��������
���
����������
��������
�
 ���
�������
 ����
 ����
 ��
�������
�������
���	���
 ������
 ���
 �)�����	
 �������
 !�
 ���
 ��'
�������
��������
�������
�
���������
����'�����
����
����
 ���	����
���
���
��
����
 ��
��������
 ���
�������
��
��$���
�
��
��G��
"��������
�����
���
��������
��
�
����������
���$��������
*
�)�����	
�����
���������
�)�����	�
 ����
 ���������
 ���	�����
&�$���
 �
 ����
����
 ���
 �������
 ���
 ���������
 �
 ��������
 ���	�����
����
 �
�����
���
 ��"����
 ��
 �������
 ����
 �
 �����
���	�����
 ����
���	����
��
����
���
��"����
��
�������
����
 �
 �)�����	��
#�����������
 �
 ������������
 �����
�������
 ���
 ���	����
���
��
 �����������
��
�
�)�
�����	�
 ������������
 �
 ���
 �������������
������
 �
 ������

�����
�����
 ��
������������
���
��������
����������
����
 ����
 ���������
 ���
 �������
 �����
 :C;
 ��
 �����
�����
�����
:��;
��
�������
�
����
�������
���
����'
���������
 ��
 ������
 :�<;�
����
 ��������
 ������
 ��
������
 �����������
 ���
 �������������
 �������
 ����
 �
����
 �������
 ����
 ����
 ��������
 ������������
 ���
������������
�
���
����������
����
��
���
���������
�
�������
 ���$�
 ��
 �������
��
 ���
������������
��������'
�����
 ����
 �����
 �������
 �����
 #��
 �������
 ��
���'
������
������
��$���
�
�������
���
�������
���
�����'
����
�
��������
���	�����
����
�
�����
���
��"����
��
�������
 ����
 �
 �����
 ���	�����
 ����
 ���	����
 ��
 ����
���
��"����
��
�������
����
�
�)�����	��
!�
������'
���
��$�
�����
���$��������
����
��
��
���������
����
���
��������
 ����
 �����
 �����������
 ������"���
 ����
 �����
����
��
����������
���
�������
�����
���
���
������
�
�������
�������
����
���
��
����������
 ���
����
����
��
��
����
 ��
��$�
 �����
�������
�������
������������

��"���������
���
�������
��G��
����������
$��
���
�
����������
 �
 ������������
 ��"��������
 ��
 ������
 ��
�������
���
�
����	��

+ � �����������
�������������
0�������
 ���
 �������
 ��������
 ��
 ��������
 ��
 �����������

�������������
 ����
 �����
 �������
 ���
 �������
 �������
 ��
 �������
 �������
 ��
 ��
 ����
 ���
 ���������
 �
 ���
�������������
 ��
 ���
 ����	��������
 ����
 �����
 �������
��������
�
���
�����
 ���
 ��������
�
�����
������
�����
 ������
 �)���)��	��-,
 ���������	�
 ���
 ��
 ��
��������
 ��
 �����������
 ����������
 �����
 ����
���������
 ��
 ���
 ���)��	�
 �����
 ��
 �������
 ��
����������	
 �
 ���
 �������
 ����
 ����������
�����"������
 ��������
 ���
 �����
 ��������
 ���
���������
 �����
 ��
 ����'���$
 ��������	
 :A;�
 :��;�
 !�
����
 ���������
 ���
 �������������
 ����������
 ���
 ���
���������
 ������
 �������
 ��
 ���
 �����
 (����
 ����
��������
���
�������������
����
 ��
�������
�
����'�����
�������
 �
 �������������
 ��������
 ��
 �����
 ���$�������
���$�
 �����
����
 ���
 �������
 ��
 ����
 ��
 �������
 ����
��������
 ����
 �������
 �����
 ���$�
 ���������
 ���
���������
 �����
 ��
 ����
 �������	�
 ��
 �������
 �
 �
���$�������
 ��
 ���������
 �������
 ���
 "����
 ���
�������������
 ��
�
�������
 �����������
 ��
 ��������
�����������
 �������
 ���
 ����������
 ����
 ��������
���������
 �������
 ����������
 ����������
 ?��
����������
 ���
 �������
 �
 �
 ����	���
 ����	
 �����
����������
 ?�<
 ����������
 ��
 ���
 ���
 ������
 ���
���������

+ 9 � �������
������
#�����
�
�����������
�
=%
������

���
����
��
����
=%

�����
 ����������
 �
 �������
 ������
 5��	����
 ���
�����������
�����
���
H'�����
��������
���
�����������
�����
 �
 ��������
 I'����
 ���
 �)�����	�
 �����
 ���
 J'
�����
*
����	���
����	
��
�
�����
�������
��
���
=%
�����
�����
�
�������-
���	���
���
�)�����	
����������
����
�����
 �
 �������
 ��
 �)���)��	��
 -,
 �
 ���	���
 ���
 �
���	���
 ��
 �)���)��	��
 -,
 �
 �)�����	�
 ����
 ���
�����'�����
 �������������
 ����������
 �����
 ��������
������
���
�����������
��
�
������
������
��������
#�����
�
������
 ��
 ����������
�
����	���
����	
����
�

���������
 ��������
 !�
 ����
 ��������
 ���
 ��������
 ��
�������
B�������
�������
#
 ���������
 I'����	
 �������
��
���
���������
����	���
����	
�����
����������
�#��
���
��������
�
����
������
��
��
���������
����
��������
���
����
�������
��
����������
������������
����
����
��
�
�������
�����	
 ����
��������
���
��������
#�������
���
���������
 �
 ���
 ����	���
 ����	
 ���������
 ����
�������������
 ���
 ��������
 ������
 ���
 �������
���������
����
 ������
 �����������
 ����
��
����$���
��
���
����	���
����	�
���
���$�������
��
�������
����
���
�������
(�������������
���	���
���
����
��������
���

VaMoS'09

38

����
 ��
 ��
 �)���)��	��
 -,
 ���
 #����
.��
 ����������
 ���
 ��
 �����
 ��
 ����������
 K
 ������������
 ���
��������
���	���
���
�)�����	
�����
��
����
�
���
�����
 �������
�������
���
���
�
��������
��������
�����
������������	�
 ���
 ���
 �������������
 ��
 ����
 ��������
�������
 ��
 �)���)��	��
 -,
 ���	���
 ���
 ������
 ��
�)���)��	��
 -,
 �)�����	�
 ���
 ���������
 ���������
���������
����
������
��
�������
 ���
������
������
�������
���
����
���������
����

����
 �������������
 ���
 ����������
 �������
 ������
����������
 ������
 ��������
 �����
 ������"���
 ����
 ��
������
 ��������
 ���
 ����	���
 ����	�
 ���
 �
 �������
�����������
 ��
 ������
 ���
 ����	���
 ����	
 ���K��
���������
 �
 ���
 ����	���
 ����	
 ���
 ��
 �������
 ��
���������
 ����������
 �������������
 #��
 ��������
 ���
���
 �
 �
 ����
 �������
 �
 �
 ������
 ��
 ���������
 ���
����	���
 ����	
 �����
 ��
 #�����
 �
 �����
 ��������
 ���
���	���
 ��
 �������
 ��
�
 �����
��
 ���
�����
 ����
��
�
��������
 ������
 ��
 "������
 ������
 #�
 "�������
 ���
����	���
����	
��
������
 ���
�������
�
 ���
 ������������
���
�����
��
��������
��
�������
$����
����
������
���
 ����
 ��
������
 ��
 ����
 ���
 �������
 ��
 ���
 ���
���������
 ��������
 �����
 ��
 ����
 ���������
 ��

�������
 �
 �
 �����
 ��
 ��
 ����
 ��
 �
 ������
 ������
��"�������
�������
�
���
�����
���������
!�
 ��
 ���������
 ��
 ��������
 ����
 �
 ����	���
 ����	

����������
 ����	���������
 *�
 �
 �����"������
 ��
��������
 �
 �
 ���	���
 ��
 �)���)��	��
 -,
 ���
�)�����	�
 ����
 ���
�������
 ����	���
����	�
����
��
����������
$��
����
 ���������
 ���
 ������������
 ���	���
�)���)��	��
 -,
 �)�����	
 �
 ���
 ���
 �����
 ����
���������
 ���	���
 �)���)��	��
 -,
 �)�����	
 <
 ���
����
 ����
 ���������
 ���
 ����
 ������������
 �������
�)���)��	��
-,
���	���+
B��
����
����
�
�������������
���
���
�
���$�������
�����
 �����������
 ��
���������
 ��
���
��������
�����������
!����'�����
�������������
���
����
������������
����

��
 �
 �����
 ����	���
 ����	
 ����������
 ����
 ���
 �������
���	���
 ����������
����
 ���
 ����	���
 ����	
 ��
 ��"�����
���
 ��
 ��
 �����'�����
 ��7�����
 ������������
 ����
�������
 ���	����
*�
 ������
���������
 ��������
����
 �
�����������
������
�
����������
����������
����������
�������
 ����
 ���
 ��
 ��"�����
 ��
 ������
 �������
���$�������
�����������
����
��
�����
���������
���
�������
 ��
 ����
 �������
 ����������
����
 ��
 ����
 �
�����
������
�������
��
�������
���
���������
���
����
�
�����������
������
���
��������������

�������	
���������������������

VaMoS'09

39

+ % � 0�
��������!
/��!�����
����
#��������
 ���
 �������
 ���������
 ��
 #�����
 ��

#�����
 <
 ��������
 �
 ����
 ���������
 ������������
 �
 ���
��������������
 B���
 �
 ���$�������
 ���
 ��������
 ���
���������
 ��
 �������
 ��������
 �������
 #
 ���
��������
 �������
 ��
$�
 ���
 ����������
 ���$���	
 �
�����
 ���������
 ������
 ����	���
 ����	�
 ���
 �����������
*
����
����	���
����	
���������
�
�������
�)���)��	��
-,
 ���	���
 ������������
 ���
 �
 ���	���
 �)���)��	��
 -,
�)�����	
 �������������
����
 A
 ����
 ����	���
 ����	��
�<
 �������������
 ��
 �����
 ���
 �����������
 !
 �
 ����	���
����	
 ��
 �����
 ��
 ���������
 ��
 ����������
 ������������
�����
����������
���	���
��7�����
���	����
!
�
����	���
����	
 ��
 ���
 ��
 ���������
 ���
 ����������
 ������������
���	���
 �8�����
 ���	����
 !
 �
 ����	���
����	
 ��
����
 ��
���������
 ���
 ����������
 ������������
 ���	���
���))����
 ���	����
 !
 �
 ����	���
 ����	
 ��
 �����
 ��
���������
 ���
 ����������
 ������������
 ���	���
���-��)�	�
 ����
 ���	����
 !�
 ������
 <C
 �������������
�������������
=
��������
������
���
�����������
+ % 9 � ���0�����
����������
*�
 ����
 ���
 �������������
 �����
 �
 ���$�������
 ��

��"�����
 ��
 ������
 �������
 ���$��
 �����������

�����������
 ��
 �������
 ��
 �����
 ����
 ����
 =%
�������������
 ������
 ��
 �
 �����������
 ������
 �
��������
 ������
 ��
 ��
 ��������
 �������
 �������
����������
���������
 ���
 ������
 ��
 �
 �����
 ������
�
����������
����������
��
��
����������
#������
���$
��
��"�����
��
�������
�
�������
�������
���
������
�
����	���
 ����	�
 ���������
 �����
 ��
 �������
 ���$�
 ���
���
�����
�
����
����������
���������
=%
 ��������������
 ����
 ���
 ���
 �
 ���
 �����'��'

����
��������
�����
���
���$�������
���
������
��
��
�
�����
��
���
����������
 ���
$���
�
�����������
������
�
�������
�����������
�
 ���
���������
����
�����
 ���
���$�������
���
����������
���
�������������
��
����
��
�������
 ����
 ���������
 ��
 �����
 ���������
 #��
��������
�����
 ������
 ��������
 �����������
 ��
 ����
���
��
���
�����
�
���
@F
��������
������
������������
���
 �@F
 ��������������
 ��
 �����������
 ��������
 ���
������
���
�������������
��
����
���
����
��������
����
�
���
 ����	
 �����������
 ���	����
 ��
 ������
 %���������
������"���
����
��
��������
���K��
 ������������
�����
��
�������
��
���
�����������
��������
��
�������
���
���
������
 �����������
 ���	����
 ����
������������
����
 ��
�
��������
�������
������
���
�������
�
���
����
�
���
�������������
��������
��
���
��������
�����

��������
������������������������������

VaMoS'09

40

*�
���������
��
?���
����	���
����	�
����������
���
��
 ����������
 ����
 �������
 �����
 ���������
 ���
����$����
 !�
 ����
 ���
 �������'��'������
 ���
 ��
��������
����
��"������
+ % % � ���
����������
*�
���
������
���������
��������
�������������
����

�������������
����
 �����
 �����
 ��������
 �
 ������
 �
����������
���������
���������
�
������
�������
����
����
��
�
����
������
�
���$�������
��
��������
�������
�
���
������
��
�
����
 ������
 ��
��������
���������
 ��
����
�����
���
����
���
��
��
���������
���������
�
���
��"�
���
������
�
���
������
��
���
������
��
�
�����
���������
 ���������
 ������
 ������$
 �������
 �������
������
 ���
 ������������
 $����
 �����
 ����
 ��
 �
�����������
 ����
 �������
 :A;
�����
 �������
 ����������
����������
 ��
 ����������
 ������
 ���
 ����
 ��
������������
 ����
 ���
 ���������
 #��
 ��������
 ��
����$���
��
 �
 ����	���
����	�
 ���
�����
 ���
 ���$�
 ��
 �
���������
����������
����
����
������������
���
��������
�������������
 �������
 ���
 �������
 ������
 ���
 ��
������������
 ���
 �����
 �
 �������
 �����������
 ����
���
 ��
 ����
 ������
 ���
 ���������
 ��
 �������
���$�������
���$��

+) � 1��0
�������
 ��
�������
���
�
 ����
�������������
 ��
 ��
�������

���������
 �������
 ��
 �������
 ���$��������
�����
 ����
���	���
 ������������
 ������
 �������
 �����������
 ��
����
�
 ����
����������
���������
 ����
 ��
 ���
�������
�
���
�����
������
��
���
��������
����
 �
 ���$�������
 ��������
 �
 ��������
 ����

��������
 ��������
 ���������
 ������
 ������$
���������
 ���
 ��"�
 ���
 ������
 �
 ���
 ������
 �
 ����
�������
 ��
 ���
 ����
 �
 ���
 �������
 !�
 ����
 ����
 ��
�����������
 ����������
 ����
 ���	����
 ���
 ����
�)�����	�
���
������
���
��
����������
���
����
�
�������������
 ����
 ������
 �����
 �������������
 #��
��������
�
�
�����
������
�
����	���
����	�
������
��

���
 �������������
 ����
 ���
 ���$�������
 �����������
�����������
����
���
�������
���
�
����������
�������
#�����
?
�����
�
����������
������������
�
���
����
�
��������
 �����
 ��
 �����������
 (����
 ���
 ������
��������
������
���������
��������
��
�����
 ����
 ��
 ��
������
 �����������
 ����
 ���
 �
 ���
 �C
 ����	���
 ����	�
����������
 D
 ����
 ����	���
 ����	�
 ���������
 ���	����
��������
 �������
 ��
 ���
 �������
 ����
 �����
�������������
 ��
 ���������
 <
 �����
 ����	���
 ����	�
���������
 ���	����
 ����
 �����
 ����
 �������������
 ��
��������
 ���
 ��
 ���
 ���������
 �
 �����
 ���	�����
 =
 ���
����	���
 ����	�
 ���������
 ���	����
 ����
 �����
 ��
�������������
��������
 ���
 ���
�������������
=
����
����	���
 ����	�
 ���������
 �����������
 ���	����
 ����
��"����
���������
 ��
��������
���������
���
���
�����
����	���
����	
����������
�
�����������
���	����
!�
������
?=
 �������������
 �������������
 =
 �������
������
 ���
�����������
!
�
�����
������
�
���
����	���
����	�
�����
����
�

�����
 ������
 �
 ���	����
 ���
 �����
 ��������
 ���
�������
 ������
 �������������
�
 ���
 ��������
 ���	����
��
 ��������
 #�����������
 �
 �
 �����
 ������
 �
 �����
����	���
����	�
 �����
 ����
 ���
 ���$�������
�����������
����
 �����
 �����
 ��������
 ��
 �����������
 ������
����������
 ����
 ����
 ������������
 ���
 ������
�������������
 ��
 �����������
 B���
 ���$
 ���
 ����
 ����
���	����
 ���
 ��
 �������
 ����������
 #�����
 =
 �����
�������
 ����������
 ������������
 ����������
 ���
 �
 ����
���	���
���������
����
�����
��
�����������
B����
A
���
����	���
 ����	�
 ���������
 A
 ���	����
 ��������
 ���
 ��
�����
��������
���	����
��������
�������
��
���
��������
 ���
 �������������
 ��������
 �
 ����'�����
 �������
 �

���
�������������
����
���
��������
��
�
�������
�������
 ���
 �������
 ���
 ��
 ��������
 "�����
 ���
 ������
 ��
���������
 �����������
 �
 ���
 ����
 ���
 ��
 �������
�������
 ������
 ���
 �����
 ���
 ���$�������
 ��
��������
 �����������
 ��������
 ����
 ��
 �����
 ���
�������
 ������
 ������
 ��
 �
 ������
 #�
 ��������
����������
 ������"����
 ��
 ���������
 ��������
 �������

��������
���������������������������

�������
����������������������

VaMoS'09

41

�������
 �
 ���
 �������������
 ���
 ��
 �����������
 ���
��������
�������
 ������
 ���
��������
#��
��������
���
�
 ��������
 ���
 ������������
 ��
 ��������
 ���
 ����	���
����	�
 ����
 ��
 ���
 ���������
 ���	���
 ���-��)�	�
����
���	���
 ��������������
 ���
 ���
 ���
 ����
 �
������������
 ���
 �����������
 ���	����
 �����
 ��������
������
�����
������
*�
���
���������
��
�������
?�<�
����
�������
���
��

����
��
��
������
��
�����
�����
������
#�
����$���
��
�
 ��������
 ������
 �����������
 �����
 ���
 �������
 ����
�������
����������
�����
�������
������
����������
����
 ���
 �����
 ��������
 ���������
 �����������
 ���

�����������
 ������"���
 ��
 ������
 ���
 �������������
 �
�������
�������
��
�������
#��
��������
�
���$��������
������
 �����������
 ���
 �����������
 �������������
 ���
����$
��
 �����
 ��������
������
 ���
����
����
 �������
����������
����
��
����
������
��
��
�����������
�����
���������
��
�����
���������
����������

2 � "��#���0
��
 ���
 ���������
 ����������
 �
 ����
 �������$

�����
 ��������
 ��
 �������������
 �������
 ��������
������
���
 �����
 �������������
���
��
 ������������
���
����
 ��
 ���
 ���$'���
 ��
 �������
 ��������������
 ����
�������
 �
 �������
 �
 ���$��
 ��
 �������
 �
 ����
�������$
���
���
�
�����
��
���
�������
�����
���
�
�������
 ��
 ��������
 ����
 ��
 ������
 ���
 ��������
���������
������
#�����
 @
 �����������
 ���
 �������
 �
 ���
 �������$�

&���'������
 ����������
 ���
 ���
 ����
 ���
 ���
�������������
 ����
 �����
 �����
 ��������
 ������
 ��
 ��

��������
 ��
 ������������
 �����
 �����
 ����
 �������
��������
 ���	���
 ���
 �)�����	
 ��
 ����
 ��
 ���
���������
 �
 ���
 �����'�����
 ��������������
 ����
������
 ���
 �����
 ������
 �������������
 ���������
 ���
���$'���
����
 ����
 ��
����
 ��
�����
�������
 ����'���
��������������
 ����
 ����
 �������
 �������
 ����������
���$��
 ��
 ��������
 ���������
 ��
 ����
 �����
 �L=%
.�������
 ���M
 ��
 #�����
 @	
����
 ��
 ������������
 ��
���
 ����
 �������������
 ��
 ������������
 ��
 �����
 ���
G���=%
*�!�
$����
��������
�������������
��������
���
�����
 ��
 #�����
 @
 ����
 ��
 �
 ������
 ����
 ���
 ��
����������
�
����
�
��������
��
�
 ���
 ���
�������
�
���	���
 ���������
 ���
 ���
 �������
 �)�����	
����������������
 ��
 �������$
 ����
 ���

������
 &��������

#�������$
�
&#	
���
�
G���
��������������
��������
�
 ��������
 �������
 ��
 �������
 ���
 ����'���
���������������
!�
 ��
���������
 ����
 ����
�������$
����
��
 ���������
 ������
 ��
 �������
 ����������
 �������
�������������
 ���
 ��������������
 ����
 ����
 ���
 �������
����������
��
�������
�������
������

3 � �����
$��0
N������
 :�=;�
 ����OO��������
 :�?;�
 #������������

:�@;
���
!����
 :�A;
���
��������
�
 �����
 ����
���
 ��
�������
�������
����������
 ��
���
������������
*��
�
�����
 ����������
 ���������
 ������
 �����������
��������������
 ��
������
 ���
 ����
 ��������������
 ���
������������
 �
 �������
 ������
 ���
 ��������������
#�������
 �
 �����
 ��
 ���
 ���
 �
 ������
 �����
 ���
������������
 ����
 �����
 �������
 ��
 �����
 �������������

��!�"���
�	
�	���

���������	�
#��"

�����	�	
�
�	
�	���������$�%��

������	�
$�%��

&����	�	��
$�%��

������	�'����
#��"

��(�����	���
#��"

��)����
#��"

*���
#��"

���
�+$

��
��

��
��
��

��
��
��

�
��

���
�%

,

&�	!�
������	
�	��������	�

��������
��������-�.������

VaMoS'09

42

����
 ��
 ����������
 ���
 ��������
 ����
 ���������������
������
 ��������
 ���$
 ��������
 �
 �����
 �����������
����
�����
�����
�������
������
$��
��������
���������
���
���$�
�
����
��������������
���
������������
���
�
 ���'�����������
 ������������
 *
 ������������'�������
�������������
 ��
 ����
 ��
 ��
 �������
 ��
 ������
 ���
����������
 ���
 �����������
 ����������
 ����
 �����
 ����
�����
�������
�������
������
 ��
 %$��
.
 :C;
 ����
 ����
 ��������
 �������

����������
 ���
�����
 �����������
 �����
 ���
 ������������
����
 �����
 ���
 ���������
 ���������
 �����
 ������
 �
���������
 �������
 �����
 ��������������
 ���
 ��
�������������
 ����
 ��������������
 ���
 ���������
�����
 ������
 ����������
�����
 �����
 ���������
 ����
��
 �����������
����'���$
���������
�����
 ���
 ����
�
���
����
��
��
��������
���
����	��
�����
��
��
�������
��
����������
������
���
�����
�����'��������������
(���$�
���
�
 ���
 �����
 ������
�����
��
������
����

��
H#������
 :�C;�
 ' ������"�
 :��;
��
#������&�����
:�D;�
 ���
 ��������
 ��������
 ��
 �������
 ���
 ��������
������
��
=%
�������������
��
�������
����������
���
�����������
�������
$����
 �������
 �������������
 �����
 ����
 ��

 !�&$$�
:�E;
���
&(%.!N
:<F;
�������
�����������
����
 �
 =%
 ���������������
 ��
 �������
 ����������
B������
�����
�����
���
�����
=%
���$
����
��
����
��
#��"��
 ��
 ��
 :<�;
 ��
 ���
 �������
 ���
 �������
������������
���
���
���������
�����
��
�������������
���
���
�������
��������
$����
���$
��
.��������
��
��
:<<;
���
.�����
��
��

:<=;
 ���
 ��������
 �
 =%
 ����������
 ��������������
�����
����
����������
�
�����
�����������
��������
����
<%
�"���������
���
����
���������
#���
������
�������
����
��
����
����������
�����
���
��
���������
������
 ��
 ������
 �
 =%
 �������������
 �����
 ��
 ������
�����
 ���
 �
 ���$��
 ��������
 ��
 ���$
 ����������
���������
 ���
���$
������
��
�������
����
��������
����
 =%
 ������"���
 ���
 ��
 �������
 ��
 �������
��������������

4 � "����
$��0
!�
 ��
 �������
 ��
 ������
 ������
 ����������
 ������

�����
 �����������
 �
 =%
 ��������������
 ���K��
�����������
 �
 ���
 �����������
 �
 =%
 ������
 <%
��������������
����
����
���������
*
 ������������
 ����������
 ���
 ����
 ������������

�������������
�������
����
��
�����������
��
���������
*�
 ���������
 ��
 ����
 ������
 �
 =%
 �������������
�����������
 ��������
 ���
 �������
 �������
 ������
�����
 ����
 �������
 ����
 ��
 ����������
 *�
��������������
 �����
 ���
 G���=%
 *�!
 ����
 ��
���������
 ���
 ������������
 ����
 ���
 ����
 �������$
���������
��������

����
 ����
 �������������
 ���
 �������$
 ��
 ������
�������
 ����
 �����
 ���
 �������
 ��
 ���������
 ���
�����������
 �
 ����
 ��������
 ��
 �������
 ���������
������
�������
�����������

5 � 6���������
 ���
�����
���������
 ���
����
 ��
��������
������

��
 �������
 �������
 ����
 �����������
 ��
 �������
����������
 �
 ���
 �����
 ����
 ����
 ����
 ���
 ������
 !�
������
 ���������
 ���
 ��"��������
 ���
 ����������
 �
�����������
 �����
 ��������
 ������
 ��
 ���
 �������
���$��������
 ��
 �������
 ���$��
*
 �������
 ���������
 ��
��������
���
����������
���
�����
�
�����'�����
����
����
 �����'�����	
 �������������
 ��
 ����
 �����
��������������
 ���
������������
 ��
 ���
 ������������
��
���
���$��������
*�
 ��������
 ��
 ��������
 ����
 ����������
 ��

��������
 ��
 �������
 ����������
 ��
 ���������
 �����
�������
�������������
������"���
��
���
��������������
���
 ������������
 �
 ���
 ����������
 �����
 ���
��������
������
��
������������
���
�������������
����
�����
 �������
 �������
������
 ��
 ���
 �������
 ������
�������
 ��
 ���
 �����
 *
 =%
 ������
 �����������
 ��
��������
 ��
 ������
 �����
 �������������
 ��
 �������
���$�������
���������
������
�������
�����������
*
 ����
 �������$
 ����
 ��������
 ��
 �������������

������
 �����
 ����
 �������������
 ���
 ������
 ���
 ��
������������
 ��
���������
 ���
�������$
��������
 ���
���������
 ���$
 ���
 ����
 ����������
 ���
 ������
 ��
�������
���
�������������
����'����
!�
 ��
 ������
 �������
 �������
 ���������
 ����
 ����

�������������
���
������
�������
 ���$��������
������
�������
 ����������
 ��
 ���������
 ��
 ��������
 �������
�����
 ��������
 �������
 ����������
 ��
 ��
 ���������
���
�����������
�������
����
�
����
��������

7 � 0�0�����	#���
 ���
���$
 ��
���������
 ���������
��
�������
#���'

������
!������
�����
�����
������
F=K�
<K!=F='��

98 � ������
:�; N�
 �����
 !�
 #P�$���
 ���
 #�
 ��
 ��
 �������
 ���	����

�����	
 ����
 4����������9
 5�����	����-
 ����������-
���
�����7����
���
���
���
&��
J��$O
���������
<FF@�

:<; ��
%��������
&�
��������
���
Q�
#�����
R�������
%���'
������
 ��
�������
�������
#�������O
*
 ����
������R
:������
��
�,�	�)�
���
���	����-
����
C?�
���
�C='�E?�
<FF@�

:=; &�
�������
��
 �������
#�
#����
*�
&S�����
$�
��������
��
 ����"�
 ���
 ��
 #������
 R!����������
 ��*
 ��
 #����
!�������
 �������O

����������
 ���
 ����������R
 ��
����
%&&'�
#������
&*�
(�*�
<FF?�
���
=?'@F�

VaMoS'09

43

:?; &�
 �������
 ���
 ��
 %��������
 R����������
 �����������
��������
 ������"����R
 �����)�	���
 ���
 ���	����
��������,-
����
?E�
���
C�C'C=E�
<FFC�

:@; ��
 �����
 R!���������
 ������������O
 ����������
 ��
%������R
 ��
 (�����
 ;���)���
 ������
 ��
 ��	���	�(�
�������,�
<��
��O
&�����
N�������
<FF?�

:A; !�
#��������$�
��
 �����
%�
&������
��
#�
*����
���
��
�������
 R �����
 ���
 �������
 ��
 ����������
 ���
(������������
 �������
 �������
 ������R
 ��
 ���
)%	�
��	����	�����
 ���	����
 �����	
 ����
 ���������
2����&*3
�������$�
!�������
<FFD�

:C; .�
.�������
 %�
 %��������
 ���
 ��
 !�S��������
 R ���
�������
��
�������
%���������
��
�����'�����
�������
�����O
*
��"���'�����
*��������R
��
)�	
��	����	�����
1�������
 ��
+��������	���
 ��
 ���	����
 �����	
 ����
4����������
2+����4
%&&,3
 �$���
Q�����
<FFC�

:D; .�
 ��
$��������
 #�
 ��
 ��
 �������
 Q�
 N������
 ���
 Q�
&�����
 R ��
 N����
 ���������
 �����
 ��
 ��������
�����������
��������R
�444
��)��	��-
����
==�
���
CD'
D@�
<FFF�

:E; N�
N����
��
������
 Q�
B����
��
&���$�
���
��
�����'
����
R#������'��������
������
��������
 �#$%*	
 ����'
������
 ������
 ��������
 .�����
 �&(K�
!'EF' .'<��R
�������

����������

!���������
��������
&�����
(��'
�������
�EEF�

:�F; N�
�"�����$�
���
��
B�
��
(�

������$���
R������
���'
���������
�����
������
�������R
��
����������
��
	��
�����
���	����
�����	
����
���������
#�����
&*O
���������
<FF?�

:��; %�
�������
���
&�
&�������
R ������"���
�������
����
.�"��������
���������
%���������R
��
)�	
��	����	�����
1�������
 ��
+��������	���
 ��
 ���	����
 �����	
 ����
4����������
2+����4
%&&,3
 �$���
Q�����
<FFC�

:�<; ��
 �������
 %�
 &������
 *�
 ����T����
 !�
 #��������$�
���
 ��
 �����
 R!����������
 ������������
 ��
 �������
�������
 ������������
 ��
�������
�������
������R
 ��
�����������
��
%��
 ��	����	�����
1�������
��
+����
�-���	,
 (�������
 ��
 ���	�������	����(�
 �,�	�)�
2+-(6�
%&&*3

�����
!�������
<FFD�

:�=; �
 *��$������
 �
&U�����P�
 ���
 �
 ���������
 RN��'
����O
*
������
��������
 ��
���������
�����������
 ��
�������
�������
 ��������R
-�(����
4����������
 ���
���)�	��-
����
<��
���
<='?F�
<FFC�

:�?; ����'�������
 !��B�
 R ������
 &���������
 ����
����OO���������R
����OKK��������'������������
 �����'
���
�����
������
<FF='<FF?�

:�@; &�
 *��$�����"
 ���
 N�
 �"�����$��
 R#������������O
#������
&�������
����'��
 ��

�������R
 ��
������
 V&'9
����������
��
	��
%&&'
66���-
��������
��
������
	�������,
�<������
 ���������
 #��
�������
 <FF?�
���
AC''C<�

:�A; #�������
��������
R!�����R
����OKK�����������������
:�C; $�
.����$
���
*�
��������
RH#�������R
����OKK�������'

�����������KH#������KB���������
:�D; #�
 B�����������
 !�
 ������
 ���
 ��
������
 R$�
 ���'

�������
 �������������
 ��
�������
�������
����

���'
��������R
��
%��
��	����	�����
1�������
��
+���������
	���
 ��
 ���	����
 �����	
 ����
 4����������
 2+����4
%&&*3
�������$�
!�������
<FFD�

:�E; $�
.����
 R ��&$$�
 � ������"�����
&������
 ��
$�'
G���
$�������
�������
�������	�R
(���������
�
%���'
�����
 ����OKK���F'����������'
�����������K����=�K����������������
<FF?�

:<F; Q�
 *���
 R���������
 �������
 �������
 �������"�����
 ���
����
 ������������
 ��
 �������������
 �����
 �����
 ��'
��������R
:������
��
+�����
��������
���
��)��	���-
<FFD�

:<�; &�
#��"���
*�
&���$�
$�
%�������
���
��
��������"�
R�������
 ����������O
 ������"���
 ���
 ���������
 �
�����
�������
��������R
��
�,)�����)
��
+������=��
	���
 2+���,)
%&&'3
N������"�
!������O

�����������
*�����������
<FF?�

:<<; !�
 .���������
 N�
 ��������
 &�
 �"������$��
 ���
 %�
.�������
R���������
 ������"�����O
 ������"���
&����'
���
!�����������
B�����������R
��
���������
��
>�)��
5�	���
 ��
 ��)��	���
 �,�	�)�
&�����������
&����'
�����
(�*�O
*�&�
<FF<�

:<=; N�
.������
&�
��
�"������$��
 �
&��"����
���
%�
#�
���$�
 R*�
 �������
 �����������
 �
 ����
 �
 ���
 ��
 <%
���
=%
����������
�������"������
�
���
��������R
��	+
:+
>�)�����)��	��
�	�����-
���
AE@'C�?�
<FFF�

VaMoS'09

44

Modeling Variation in Production Planning Artifacts

Gary J. Chastek
 Software Engineering Institute

 gjc@sei.cmu.edu

John D. McGregor
Clemson University

johnmc@cs.clemson.edu

Abstract

Production planning and variation modeling are
interdependent parallel activities critical to the success
of a software product line. Software product line
organizations design a production capability to satisfy
their business goals. That production capability is
dependent on and must support the full range of
product variation. Current techniques for variation
modeling identify and handle variations among
products but fail to recognize variations that result
from business goals such as rapid time to market
which are satisfied by how products are built. In this
paper we present a view of our production planning
technique and describe our preliminary research into
its relation to variation modeling.

1. Introduction

Variation distinguishes a software product line from
single product development. A variation is any concern
that will vary from one product to another or that may
vary in time. Product feature models alone are
inadequate for modeling the full range of variations the
software product line organization must manage. They
capture product but not production variations. Goals
like mass customization are production rather than
product issues, and can yield strategically-significant
variations. The variations in how products are built are
a direct result of the goals of the organization. For
example, a business goal to compete in the global
market can lead to variations in testing processes used
depending upon the market for which each product is
intended.

These variations are the result of strategic decisions
made during early product line planning activities of
the “What to Build” (WTB) pattern [1], shown in
Figure 1. Scoping uses the marketing analysis to
identify the members of the product line. During this
activity variations in features among the products are
identified. The market analysis identifies market
segments and analyzes the differences among them.

Building the business case requires the creation of a
justification for the use of the organization’s assets to
create and operate the product line organization. It also
provides the opportunity to identify additional
variations that are not directly related to product
content but that are related to product production. We
will call the variations found during the WTB activities
strategic variations. A change in a strategic variation
results in a change to at least one of the WTB artifacts,
and vice versa. For example, expanding the scope of
the product line may result in additional test
requirements if the additional product is intended for a
new market.

Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product Line
Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Key

Informs

Activity
Output

Artifact

Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product Line
Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Key

Informs

Activity
Output

Artifact

Key

Informs

Activity
Output

ArtifactArtifact

Figure 1 What to build pattern

In addition to strategic we also define tactical
variations as those variations that arise from the
resolution of strategic variations. For example, the
development process will have a step in test planning
where the levels of test coverage are determined by the
intended market. Tactical variations typically do not
necessitate a change in a strategic variation but could
if, for example, the choice an architectural mechanism
provided the possibility of supporting a wider range of
products.

The progression from strategic to tactical variation
and ultimately to variation point corresponds to
positions along the Variation axis in the space defined
in [2], as illustrated in Figure 2. The strategic variations

VaMoS'09

45

represent “what concerns” are important and are placed
further out on the Variation axis than the tactical
variations that represent “how” those concerns are
addressed. Similarly, tactical variations are placed
further out than variation points since tactical
variations represent the broad concern while a specific
variation point addresses only a portion of that concern.
Finally, a bound variation point represents a fixed point
in the two-dimensional single-product plane. This
progression corresponds to the hierarchical separation
of concerns described by [3].

Strategic
Variation

Tactical
Variation

Variation
Point

Variation

Strategic
Variation

Tactical
Variation

Variation
Point

Variation

Figure 2 Variations in context

The goal of this paper is to describe our preliminary

research into the relation between variation modeling
and production planning. Its contribution is to identify
key software product line variations not currently
considered (i.e., variations related to how products are
produced1) and to extend the work of Berg et al [2] by
explicitly identifying strategic and tactical variation
points.

The subsequent sections describe our work in
production planning, variations in the production
system and their relation to variation modeling in
general, and finally the current directions of our
ongoing research.

2. Production Planning Artifacts

How a software product line organization builds its
products is a system, the production system [5], that
has both functionality (e.g., the development tools
employed) and quality attributes (e.g., how quickly a
specified product can be delivered). Production
planning devises a production system that

• Satisfies the organization’s goals and
constraints for its product line

• Coordinates the design of the core assets
with the production system

• Communicates the effective use of the
production system to the product
developers

1 Schmid and Eichelberger have addressed binding
time as a meta-variability using aspects [4].

This is achieved by formulating a production
strategy [6], constructing a production method [7], and
documenting the production process in a production
plan [8]. The production strategy links the business
goals of the software product line organization to its
means of product production. Porter’s Five Forces
model [9] is used to derive strategic actions that the
production system must provide. For example, the
organization can resolve the force of potential entrants
(i.e., new competitors) into the market by taking the
strategic action of automating product production and
thereby reducing the per-product costs.

The production method defines an overall
implementation approach that coordinates the efforts of
the core asset and product developers. Method
engineering techniques are used to define a method
specifically for the needs of the product line
organization. The production method contains
processes, tools, and models that are used to implement
the strategic actions related to product production.
Efficiencies in production can be achieved by the
elimination of inconsistencies across the processes,
models, and tools. For example, the automating product
production strategy can be partially implemented by
using automated test generation tools.

The production plan communicates the production
process details to the product developers. A generic
production plan is developed as a core asset. Each core
asset has “an attached process that specifies how it will
be used in the development of actual products.” [1] The
plan is made product-specific by adding in the attached
processes from the core assets selected for use by the
product builders. For example, the production plan
would specify the parameters to be used in instantiating
the test generation facility.

The representation of variation points in the
production planning artifacts varies by organization but
should be compatible with the approaches being used
in the organization’s core assets. Ultimately the
variation point representation must support the
production of products in accordance with the goals for
the software product line.

3. Production Planning Process and
Modeling Variations

Each of the artifacts produced during production
planning provides a different view on the variation
model. During the early product line planning
activities, described in the WTB pattern, variations are
identified based on the differences among product
feature sets and the differences in production
techniques as identified from the business goals and

VaMoS'09

46

market analysis. These strategic variations are a
primary input into the production planning process. As
production planning moves from strategy development
to method development to plan construction, the view
of production becomes more concrete and focused.

3.1 Production Strategy

The production strategy defines the overall
approach to producing products and begins the
production planning process that ultimately results in
the resolution of variation points. The strategic
variations, identified during the analysis of the artifacts
that result from applying the WTB pattern, lead to the
identification of tactical production issues. For
example, the strategic variation of addressing the
delivery needs of a diverse market might translate into
a tactical variation in the production process, e.g.
waterfall vs. agile, that would be selected by the
product builders for a specific product.

Table 1 Porter’s forces

Porter
Forces

Strategic
Actions

Example impacts
on variation

Potential
Entrants

Leverage
economies of
scale

Minimize variant
choices to get
maximum use from
each variant

Substitutes Raise the cost of
switching to
another product

Provide some minimal
variant
implementations for
each variation to
allow for a low-cost
product to attract or
retain customers

Suppliers Commoditize
required
components

Implement variations
behind standard
interfaces to maximize
the number of
potential suppliers

Buyers Differentiate from
other products

Maximize the number
of variations to
provide flexibility

Competitors Improve features Expand the number of
variants available per
variation to add
features for customers

During production strategy development, strategic

actions are identified as a means of resolving each of
the forces identified using Porter’s Five Forces strategy
development model. The strategic actions that resolve
one force can be at odds with another action resolving
a different force leading to tradeoffs between those

actions. Table 1 shows examples of strategic actions
and corresponding impacts on tactical variations.

For example, the Potential Entrants force can be
resolved by the strategic action of leveraging
economies of scale, implying a minimization of the
number of variant choices. Similarly the Buyers force
can be resolved by differentiation from other products,
leading to the maximization of the number of
variations. This conflict can be resolved by maximizing
the number of variations but minimizing the number of
variants for each variation. This provides flexibility
without a large upfront investment with the variation
point providing the option to later expand the number
of variants available.

3.2 Production Method

Method engineering designs constructs and adapts
processes, models and tools for the development of
software systems [10]. Method fragments are coherent
pieces of development methods. The method engineer
considers the characteristics of the organization and the
current project to define a development method that
will meet the specific needs of the project. In a
software product line organization this includes the
business goals and the variations in how the products
will be produced.

The production method specifies how products will
be built and directly affects how core assets are
designed to support product building. The decisions
about how to resolve the tactical variations are part of
the method engineering activity that defines the
production method. The production method uses a
model of the tactical production variations to identify
points of variation in the assets, see Figure 3.

Strategic
Variation

Tactical
Variation

Tactical
Variation

Core Asset

Variation
Point

Variation
Point

Core Asset

Variation
Point

Variation
Point

Strategic
Variation
Strategic
Variation

Tactical
Variation

Tactical
Variation

Tactical
Variation
Tactical

Variation

Tactical
Variation
Tactical

Variation

Core Asset

Variation
Point

Variation
Point

Core Asset

Variation
Point

Variation
Point

Variation
Point

Variation
Point

Core Asset

Variation
Point

Variation
Point

Variation
Point

Variation
Point

Figure 3 Variations to variation points

The model consists of the decisions that must be
made regarding which portions of the production
method to use in a specific situation. For example, if
multiple deployment platforms are targeted, the

VaMoS'09

47

product builder would need to switch between different
memory models and the tools specific to each. The
production method would capture this variation in a
process description and would specify the tools and
models for both platforms.

The method engineers responsible for creating the
product method determine the set of variation
mechanisms from which the asset developers will be
allowed to select for implementing their products. For
example, aspect-oriented programming may be
identified as a useful technique to include in the
production method. Core asset developers will be able
to create an asset that includes a basic unit and a set of
aspects from which the product builder may select. The
attached process for that asset would provide
instructions for using the aspect weaver and other
related tools and for incorporating the actions related to
aspects into the production method.

The production strategy is a high-level answer to the
question: “How can product development satisfy the
organization’s goals for the software product line?”
The strategy provides a direct link between the product
line goals and the means of product production. For
example, a product line goal of “faster time to market”
could lead to a strategy in which automation is used
wherever possible.

3.3 Production Plan

The production plan guides product builders
through building their specific product using the core
assets. There are two “flavors” of the production plan:
the generic and the product-specific.

The generic production plan is largely constructed
from method fragments which correspond to the
production variations. The method fragments are
coordinated with the attached processes of specific core
assets. The generic production plan, which is a core
asset, is incomplete because it includes a model of the
product variations. The variation points in this model
represent decisions to be made by the product builder.

The generic production plan is instantiated into the
product-specific production plan using the information
in the attached processes of the core assets selected to
satisfy the product variations, see Figure 4.

When a specific core asset is selected for use in
building a product, its attached process is added to the
emerging product-specific production plan. That
includes adding a method fragment to the production
method for that product just as the information
provided by the core asset is added to the product. The
generic production plan provides the context for
making the tactical decisions required to select a

variant from among those possible at each variation
point. The fully instantiated product-specific
production plan has no unbound variation points, but
the product may still have unbound variation points.

Generic
production plan

Variation point

Product-specific
production plan

Attached process

���������	
��

product
Variation point

product
Variant

Core asset base

Core
asset

Attached
process

Product
content

Generic
production plan

Variation point

Product-specific
production plan

Attached process

Generic
production plan

Variation point

Generic
production plan

Variation pointVariation point

Product-specific
production plan

Attached process

Product-specific
production plan

Attached process

���������	
��

product
Variation point

product
Variant

product
Variation point

product
Variation pointVariation point

product
Variant

product
VariantVariant

Core asset base

Core
asset

Attached
process

Product
content

Core asset base

Core
asset

Attached
process

Product
content

Core
asset

Attached
process

Product
content

Figure 4 Production plan instantiation

3.4 Example

Bundling is a business strategy that groups a set of
the products in the product line for sale as a unit. The
products vary from each other but share a common
high level purpose. A suite of word-processing,
presentation graphics, and spreadsheet products are
bundled based on a user’s role in an organization. A
security package bundles several products that all relate
to the same general purpose - ensuring the security of a
computer. The distribution of variants for a single
feature across the products in the unit is a strategic
variation. Some specific strategic variations include the
range of operating systems to be supported or the
variety of human languages to be supported.

The strategic variation of having different
functionality based on a common purpose leads to a
number of tactical variations. For example, file formats
vary because different users handle very different types
of information. The most efficient storage format for
one type of information is different for other types of
information. Another tactical variation is the variation
among user interfaces. Some of the interfaces will be
graphical while others will be text-oriented.

The tactical variations occur at places in core assets
where product-specific information is required. The
tactical variation in user interfaces results in a number
of variation points. One such point might address the
look and feel. Many windowing systems provide the
ability to select different skins, menu styles, and
window borders.

VaMoS'09

48

These variation points often correspond to variation
points in the production method. For example, different
products can require different binding times which in
turn can require different design and construction
techniques. Choosing one windowing systems could
result in binding variation decisions at installation time
while another windowing system would support
configuration changes at any time.

4. Conclusions and Future Work

Variation modeling and production planning need to
be cooperating activities. Production planning does not
resolve product variations but they are vital to its
success. At the very least the production method must
provide the means for resolving all product variations.
Frequently, product variations lead to variations in both
the production method and production plan.

Variation in a software product line organization
includes differences in the feature sets of products and
in the system used to produce the products. These
differences are captured in the assets related to product
production. The production system must support these
variations. That involves mapping the strategic
variations into the core asset specifications including
those of the production system itself.

The goals for a software product line impose goals
and constraints on its production system. The
production strategy, production method, and
production plan provide a natural progression from
strategic to tactical to concrete instructions for the
product builder.

A number of issues require further investigation.
Our techniques for identifying production variations
are still intuitive and need more complete definition.
The relationships between product and production
variations and between strategic and tactical variations
are not fully clarified. For example, it seems that each
specific variation point has some element of both
product and production associated with it. Is this true
only for code-based assets or for assets in general?

There are multiple method engineering techniques
that provide support for reusable pieces, i.e., method
fragments. Which of these techniques can be used
during method engineering to ensure that the fragments
resulting from the different variants can be composed
into a useful method? Will those techniques scale given
the strategic levels of reuse encountered in a software
product line organization?

Both production planning and variation management
are central to product line success. The techniques
presented in this paper illustrate that these two

important ideas should work together to enhance
product line operation.

5. Acknowledgments

Special permission to reproduce the Paper

“Modeling Variation in Production Planning Artifacts”
by Gary Chastek and John McGregor, Copyright 2008
by Carnegie Mellon University, is granted by the
Software Engineering Institute.

THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS"
BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

6. References

[1] Clements, P. and L. Northrop, Software Product Lines:
Practices and Patterns, Addison Wesley, Reading, MA
(2002).

[2] Berg, K.; Bishop, J.; & Muthig, D.: Tracing Software
Product Line Variability – From Problem to Solution Space,
Proceedings of SAICSIT 2005, pp 182 –191.

[3] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S. M.: N
Degrees of Separation: Multi-dimensional Separation of
Concerns. ICSE’99, 1999, pp. 107 – 119.

[4] Schmid, K. and Eichelberger, H.: Model-Based
Implementation of Meta-Variability Constructs: A Case
Study using Aspects, http://www.vamos-
workshop.net/2008/papers/VAMOS08_07.pdf

[5] Chastek, G.; Donohoe, P.; McGregor, J. D.: A Production
System for Software Product Lines, SPLC 2007, pp. 117-
128, 11th International Software Product Line Conference
(SPLC 2007), 2007.

[6] Chastek, G.; Donohoe, P.; McGregor, J. D.: Formulation
of a Production Strategy for a Software Product Line.
Technical Note, CMU/SEI-2008-TN-023, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, 2008.

VaMoS'09

49

[7] Chastek, G.; Donohoe, P.; McGregor, J. D.: Applying
Goal-Driven Method Engineering to Product Production in a
Software Product Line. Technical Report, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA, to appear.

[8] Chastek, G.; McGregor, J. D.: Guidelines for Developing
a Product Line Production Plan, Technical Report,
CMU/SEI-2002-TR-006, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, June
2002.

[9] Porter, M. E., Competitive Strategy, Free Press, 2004.

[10] Brinkkemper, S. Method Engineering: Engineering of
Information Systems Development Methods and Tools,
Information and Software Technology 38 (1996) 275-280.

VaMoS'09

50

A Formal Semantics for Multi-level Staged Configuration

Andreas Classen,∗ Arnaud Hubaux and Patrick Heymans

PReCISE Research Centre,

Faculty of Computer Science,

University of Namur

5000 Namur, Belgium

E-mail: {acs,ahu,phe}@info.fundp.ac.be

Abstract

Multi-level staged configuration (MLSC) of feature di-
agrams has been proposed as a means to facilitate con-
figuration in software product line engineering. Based on
the observation that configuration often is a lengthy under-
taking with many participants, MLSC splits it up into dif-
ferent levels that can be assigned to different stakeholders.
This makes configuration more scalable to realistic environ-
ments. Although its supporting language (cardinality based
feature diagrams) received various formal semantics, the
MLSC process never received one. Nonetheless, a formal
semantics is the primary indicator for precision and un-
ambiguity and an important prerequisite for reliable tool-
support.

We present a semantics for MLSC that builds on our
earlier work on formal feature model semantics to which
it adds the concepts of level and configuration path. With
the formal semantics, we were able to make the original
definition more precise and to reveal some of its subtleties
and incompletenesses. We also discovered some important
properties that an MLSC process should possess and a con-
figuration tool should guarantee. Our contribution is pri-
marily of a fundamental nature, clarifying central, yet am-
biguous, concepts and properties related to MLSC. Thereby,
we intend to pave the way for safer, more efficient and more
comprehensive automation of configuration tasks.

1 Introduction

Feature Diagrams (FDs) are a common means to repre-
sent, and reason about, variability during Software Prod-

∗FNRS Research Fellow.

uct Line (SPL) Engineering (SPLE) [10]. In this context,
they have proved to be useful for a variety of tasks such as
project scoping, requirements engineering and product con-
figuration, and in a number of application domains such as
telecoms, automotive and home automation systems [10].

The core purpose of an FD is to define concisely the
set of legal configurations – generally called products – of
some (usually software) artefact. An example FD is shown
in Figure 1. Basically, FDs are trees1 whose nodes denote
features and whose edges represent top-down hierarchical
decomposition of features. Each decomposition tells that,
given the presence of the parent feature in some configura-
tion c, some combination of its children should be present in
c, too. Which combinations are allowed depends on the type
of the decomposition, that is, the Boolean operator associ-
ated to the parent. In addition to their tree-shaped backbone,
FDs can also contain cross-cutting constraints (usually re-
quires or excludes) as well as side constraints in a textual
language such as propositional logic [1].

Given an FD, the configuration or product derivation
process is the process of gradually making the choices de-
fined in the FD with the purpose of determining the product
that is going to be built. In a realistic development, the con-
figuration process is a small project itself, involving many
people and taking up to several months [11]. In order to
master the complexity of the configuration process, Czar-
necki et al. [5] proposed the concept of multi-level staged
configuration (MLSC), in which configuration is carried
out by different stakeholders at different levels of product
development or customisation. In simple staged configu-
ration, at each stage some variability is removed from the
FD until none is left. MLSC generalises this idea to the
case were a set of related FDs are configured, each FD per-
taining to a so-called ‘level’. This addresses problems that

1Sometimes DAGs are used, too [8].

VaMoS'09

51

taxGateway
G

totalOrder
O

lineItems
I

certiTax
T

taxExpress
E

cyberSource
S

calcMethod
M

serviceID
D

repBrkdwn
B

Figure 1. FD example, adapted from [5].

occur when different abstraction levels are present in the
same FD and also allows for more realism since a realistic
project would have several related FDs rather than a single
big one [12, 11].

Even though its supporting language (cardinality based
FDs) received various formal semantics [4, 13], the MLSC
process never received one. Nonetheless, a formal seman-
tics is the primary indicator for precision and unambigu-
ity and an important prerequisite for reliable tool-support.
This paper is intended to fill this gap with a semantics for
MLSC that builds on our earlier work on formal semantics
for FDs [13]. The earlier semantics of [13] will be herein
referred to as static, because it concentrates on telling which
configurations are allowed (and which are disallowed), re-
gardless of the process to be followed for reaching one or
the other configuration. We thus extend this semantics with
the concepts of stage, configuration path and level.

The contribution of the paper is a precise and formal ac-
count of MLSC that makes the original definition [5] more
explicit and reveals some of its subtleties and incomplete-
nesses. The semantics also allowed us to discover some
important properties that an MLSC process should possess
and a configuration tool should guarantee.

The paper is structured as follows. Section 2 recalls the
static FD semantics and introduces a running example. Sec-
tion 3 recapitulates the main concepts of staged configura-
tion which are then formalised in Section 4 with the intro-
duction of the dynamic semantics. Ways to implement and
otherwise use the semantics are discussed in Section 5. The
paper will be concluded in Section 6. An extended version
of this paper was published as a technical report [3].

2 Static FD semantics ([[.]]
FD

)

In [13], we gave a general formal semantics to a wide
range of FD dialects. The full details of the formalisation
cannot be reproduced here, but we need to recall the es-
sentials.2 The formalisation was performed following the
guidelines of Harel and Rumpe [7], according to whom each

2Some harmless simplifications are made wrt. the original [13].

Table 1. FD decomposition operators

a

a

a

a

and : ∧
or : ∨

xor : ⊕

〈n..n〉
〈1..n〉
〈1..1〉
〈i..j〉

i..j

Cardinality
Concrete
syntax

Boolen
operator

modelling language L must possess an unambiguous math-
ematical definition of three distinct elements: the syntactic
domain LL, the semantic domain SL and the semantic func-
tion ML : LL → SL, also traditionally written [[·]]L.

Our FD language will be simply called FD, and its syn-
tactic domain is defined as follows.

Definition 1 (Syntactic domain LFD) d ∈ LFD is a 6-
tuple (N, P, r, λ, DE, Φ) such that:

• N is the (non empty) set of features (nodes).

• P ⊆ N is the set of primitive features.

• r ∈ N is the root.

• DE ⊆ N × N is the decomposition relation between
features which forms a tree. For convenience, we will
use children(f) to denote {g | (f, g) ∈ DE}, the set
of all direct sub-features of f , and write n → n′ some-
times instead of (n, n′) ∈ DE.

• λ : N → N × N indicates the decomposition type of
a feature, represented as a cardinality 〈i..j〉 where i
indicates the minimum number of children required in
a product and j the maximum. For convenience, spe-
cial cardinalities are indicated by the Boolean opera-
tor they represent, as shown in Table 1.

• Φ is a formula that captures crosscutting constraints
(
requires� and
 includes�) as well as textual
constraints. Without loss of generality, we consider Φ
to be a conjunction of Boolean formulae on features,
i.e. Φ ∈ B(N), a language that we know is expres-
sively complete wrt. SFD [14].

Furthermore, each d ∈ LFD must satisfy the following
well-formedness rules:

• r is the root: ∀n ∈ N(∃n′ ∈ N • n′ → n) ⇔ n = r,

• DE is acyclic: ∃n1, .., nk ∈ N • n1 → .. → nk → n1,

• Terminal nodes are 〈0..0〉-decomposed.

Definition 1 is actually a formal definition of the graph-
ical syntax of an FD such as the one shown in Figure 1;

VaMoS'09

52

for convenience, each feature is given a name and a one-
letter acronym. The latter depicts an FD for the tax gateway
component of an e-Commerce system [5]. The component
performs the calculation of taxes on orders made with the
system. The customer who is going to buy such a system
has the choice of three tax gateways, each offering a dis-
tinct functionality. Note that the hollow circle above fea-
ture B is syntactic sugar, expressing the fact that the fea-
ture is optional. In LFD, an optional feature f is encoded
with a dummy (i.e. non-primitive) feature d that is 〈0..1〉-
decomposed and having f as its only child [13]. Let us
call Bd the dummy node inserted between B and its par-
ent. The diagram itself can be represented as an element of
LFD where N = {G, T, E, ...}, P = N \ {Bd}, r = G,
E = {(G, T), (G, E), ...}, λ(G) = 〈1..1〉, ... and Φ = ∅.

The semantic domain formalises the real-world concepts
that the language models, and that the semantic function
associates to each diagram. FDs represent SPLs, hence the
following two definitions.

Definition 2 (Semantic domain SFD) SFD
�
= PPP , in-

dicating that each syntactically correct diagram should be
interpreted as a product line, i.e. a set of configurations or
products (set of sets of primitive features).

Definition 3 (Semantic function [[d]]
F D

) Given d ∈ LFD,
[[d]]

F D
returns the valid feature combinations FC ∈ PPN

restricted to primitive features: [[d]]
F D

= FC |P , where the
valid feature combinations FC of d are those c ∈ PN that:

• contain the root: r ∈ c,

• satisfy the decomposition type: f ∈ c ∧ λ(f) =
〈m..n〉 ⇒ m ≤ |children(f) ∩ c| ≤ n,

• justify each feature: g ∈ c∧g ∈ children(f)⇒f ∈ c,

• satisfy the additional constraints: c |= Φ.

The reduction operator used in Definition 3 will be used
throughout the paper; it is defined as follows.

Definition 4 (Reduction A |B)

A |B
�
= {a′|a ∈ A ∧ a′ = a ∩ B} = {a ∩ B|a ∈ A}

Considering the previous example, the semantic function
maps the diagram of Figure 1 to all its valid feature combi-
nations, i.e.

{{G, T, M, O}, {G, T, M, I}, ...}.
As shown in [13], this language suffices to retrospec-

tively define the semantics of most common FD languages.
The language for which staged configuration was initially
defined [5], however, cannot entirely be captured by the
above semantics [14]. The concepts of feature attribute,

feature reference and feature cardinality3 are missing. At-
tributes can easily be added to the semantics [4], an exercise
we leave for future work. Feature cardinalities, as used for
the cloning of features, however, would require a major re-
vision of the semantics [4].

Benefits, limitations and applications of the above se-
mantics have been discussed extensively elsewhere [13].
We just recall here that its main advantages are the fact that
it gives an unambiguous meaning to each FD, and makes
FDs amenable to automated treatment. The benefit of defin-
ing a semantics before building a tool is the ability to reason
about tasks the tool should do on a pure mathematical level,
without having to worry about their implementation. These
so-called decision problems are mathematical properties de-
fined on the semantics that can serve as indicators, validity
or satisfiability checks.

In the present case, for instance, an important property
of an FD, its satisfiability (i.e. whether it admits at least
one product), can be mathematically defined as [[d]]

F D
= ∅.

As we will see later on, the lack of formal semantics for
staged configuration makes it difficult to precisely define
such properties.

For the remainder of the paper, unless otherwise stated,
we always assume d to denote an FD, and (N, P, r, λ, DE,
Φ) to denote the respective elements of its abstract syntax.

3 Multi-level staged configuration

According to the semantics introduced in the previous
section, an FD basically describes which configurations are
allowed in the SPL, regardless of the configuration process
to be followed for reaching one or the other configuration.
Still, such a process is an integral part of SPL application
engineering. According to Rabiser et al. [11], for instance,
the configuration process generally involves many people
and may take up to several months.

Czarnecki et al. acknowledge the need for explicit pro-
cess support, arguing that in contexts such as “software sup-
ply chains, optimisation and policy standards”, the config-
uration is carried out in stages [5]. According to the same
authors, a stage can be defined “in terms of different di-
mensions: phases of the product lifecycle, roles played by
participants or target subsystems”. In an effort to make this
explicit, they propose the concept of multi-level staged con-
figuration (MLSC).

The principle of staged configuration is to remove part
of the variability at each stage until only one configuration,
the final product, remains. In [5], the refinement itself is
achieved by applying a series of syntactic transformations

3Czarnecki et al. [5] distinguish group and feature cardinalities. Group
cardinalities immediately translate to our decomposition types and 〈0..1〉
feature cardinalities to optional features. The 〈i..k〉 feature cardinalities,
with i ≥ 0 and k > 1, however, cannot be encoded in LFD .

VaMoS'09

53

r

a b c

remove feature c r

a b

2..3 2..2

r

a b c

select feature c

dummy

a b

2..3

1..2

r

c

r

a b c

refine cardinality

2..3

r

a b c

2..2

Figure 2. Specialisation steps, adapted from [5].

to the FD. Some of these transformations, such as setting
the value of an attribute, involve constructs that are not for-
malised as part of the semantics defined in Section 2. The
remaining transformations are show in Figure 2. Note that
they are expressed so that they conform to our semantics.

Multi-level staged configuration is the application of this
idea to a series of related FDs d1, .., d�. Each level has
its own FD, and, depending on how they are linked, the
configuration of one level will induce an automatic spe-
cialisation of the next level’s FD. The links between dia-
grams are defined explicitly through specialisation anno-
tations. A specialisation annotation of a feature f in di,
(f ∈ Ni), consists of a Boolean formulae φ over the fea-
tures of di−1(φ ∈ B(Ni−1)). Once level i − 1 is con-
figured, φ can be evaluated on the obtained configuration
c ∈ [[di−1]]F D

, using the now standard Boolean encoding
of [1], i.e. a feature variable n in φ is true iff n ∈ c. De-
pending on its value and the specialisation type, the feature
f will either be removed or selected through one of the first
two syntactic transformations of Figure 2. An overview of
this is shown in Table 2.

Let us illustrate this on the example of the previous sec-
tion: imagine that there are two times at which the customer
needs to decide about the gateways. The first time (level
one) is when he purchases the system. All he decides at this
point is which gateways will be available for use; the dia-
gram that needs to be configured is the one shown on the
left of Figure 3. Then, when the system is being deployed
(level two), he will have to settle for one of the gateways
and provide additional configuration parameters, captured
by the first diagram on the right side of Figure 3. Given the
inter-level links, the diagram in level two is automatically
specialised based on the choices made in level one.

Note that even though both diagrams in the example are
very similar, they need not be so. Also note that the origi-
nal paper mentions the possibility, that several configuration
levels might run in parallel. It applies, for instance, if lev-
els represent independent decisions that need to be taken by
different people. As we show later on, such situations give
rise to interesting decision problems.

Finally, note that the MLSC approach, as it appears
in [5], is entirely based on syntactic transformations. This
makes it difficult to decide things such as whether two lev-

els A and B are commutative (executing A before B leaves
the same variability as executing B before A). This is the
main motivation for defining a formal semantics, as follows
in the next section.

4 Dynamic FD semantics ([[.]]
CP

)

We introduce the dynamic FD semantics in two steps.
The first, Section 4.1, defines the basic staged configuration
semantics; the second, Section 4.2, adds the multi-level as-
pect.

4.1 Staged configuration semantics

Since we first want to model the different stages of the
configuration process, regardless of levels, the syntactic do-
main LFD will remain as defined in Section 2. The seman-
tic domain, however, changes since we want to capture the
idea of building a product by deciding incrementally which
configuration to retain and which to exclude.

Indeed, we consider the semantic domain to be the set
of all possible configuration paths that can be taken when
building a configuration. Along each such path, the initially
full configuration space ([[d]]

F D
) progressively shrinks (i.e.,

configurations are discarded) until only one configuration is
left, at which point the path stops. Note that in this work,
we thus assume that we are dealing with finite configuration
processes where, once a unique configuration is reached, it
remains the same for the rest of the life of the application.
Extensions of this semantics, that deal with reconfigurable
systems, are discussed in [3]. For now, we stick to Defini-
tions 5 and 7 that formalise the intuition we just gave.

Definition 5 (Dynamic semantic domain SCP) Given
a finite set of features N , a configuration path π is a
finite sequence π = σ1...σn of length n > 0, where each
σi ∈ PPN is called a stage. If we call the set of such paths
C, then SCP = PC.

The following definition will be convenient when ex-
pressing properties of configuration paths.

VaMoS'09

54

Table 2. Possible inter-level links; original definition [5] left, translation to FD semantics right.
Specialisation Condition Specialisation Equivalent Boolean constraint

type value operation with f ∈ Ni, φ ∈ B(Ni−1), c ∈ [[di−1]]F D

positive true select
φ(c) ⇒ f

Select f , i.e. Φi becomes

positive false none Φi ∪ {f}, if φ(c) is true.

negative false remove ¬φ(c) ⇒ ¬f
Remove f , i.e. Φi becomes

negative true none Φi ∪ {¬f}, if φ(c) is false.

complete true select
φ(c) ⇔ f

Select or remove f depending on

complete false remove the value of φ(c).

taxGateway1
G1

certiTax1
T1

taxExpress1
E1

cyberSource
CS

taxGateway1
G1

taxExpress1
E1

cyberSource1
S1

Level 1 Level 2

Stage 1 Stage 2 Stage 3Stage 1 Stage 2

cyberSource1
S1

manual specification automatic specification manual

Inter-level links

taxGateway2
G2

certiTax2
T2

taxExpress2
E2

cyberSource
CS

cyberSource2
S2

totalOrder2
O2

lineItems2
I2

calcMethod2
M2

serviceID2
D2

repBrkdwn2
B2

taxGateway2
G2

taxExpress2
E2

cyberSource
CS

cyberSource2
S2

serviceID2
D2

repBrkdwn2
B2

taxGateway2
G2

cyberSource
CS

cyberSource2
S2

repBrkdwn2
B2

⎧⎨
⎩

¬T1 ⇒ ¬T2

¬E1 ⇒ ¬E2

¬S1 ⇒ ¬S2

Figure 3. Example of MLSC, adapted from [5].

Definition 6 (Path notation and helpers)

• ε denotes the empty sequence

• last(σ1...σk) = σk

Definition 7 (Staged configuration semantics [[d]]
CP

)
Given an FD d ∈ LFD, [[d]]

CP
returns all legal paths π

(noted π ∈ [[d]]
CP

, or π |=
CP

d) such that

(7.1) σ1 = [[d]]
F D

(7.2) ∀i ∈ {2..n} • σi ⊂ σi−1

(7.3) |σn| = 1

Note that this semantics is not meant to be used as an
implementation directly, for it would be very inefficient.
This is usual for denotational semantics which are essen-
tially meant to serve as a conceptual foundation and a ref-
erence for checking the conformance of tools [15]. Along
these lines, we draw the reader’s attention to condition (7.2)
which will force compliant configuration tools to let users
make only “useful” configuration choices, that is, choices
that effectively eliminate configurations. At the same time,
tools must ensure that a legal product eventually remains

reachable given the choices made, as requested by condi-
tion (7.3).

As an illustration, Figure 4 shows an example FD and its
legal paths. A number of properties can be derived from the
above definitions.

Theorem 8 (Properties of configuration paths)

(8.1) [[d]]
F D

= ∅ ⇔ [[d]]
CP

= ∅
(8.2) ∀c ∈ [[d]]

F D
• ∃π ∈ [[d]]

CP
• last(π) = {c}

(8.3) ∀π ∈ [[d]]
CP

• ∃c ∈ [[d]]
F D

• last(π) = {c}
Contrary to what intuition might suggest, (8.2) and (8.3)

do not imply that |[[d]]
F D

| = |[[d]]
CP

|, they merely say that
every configuration allowed by the FD can be reached as
part of a configuration path, and that each configuration path
ends with a configuration allowed by the FD.

Czarnecki et al. [5] define a number of transformation
rules that are to be used when specialising an FD, three
of which are shown in Figure 2. With the formal seman-
tics, we can now verify whether these rules are expressively
complete, i.e. whether is it always possible to express a σi

(i > 1) through the application of the three transformation
rules.

VaMoS'09

55

{c1}

{c2}
{c3}

{c1}
{c2}

{c3}

σ1 σ2 σ3

r

a b c

{c2}

{c1}
{c3}

c1 = {r, a}
c2 = {r, b}
c3 = {r, c}

{c1, c2}

{c2, c3}

{c1, c3}

{c1, c2, c3}

[[d]]
CP

=

d =

{c1, c2, c3}, with

[[d]]
F D

=

{c1, c2}

{c2, c3}

{c1, c3}

{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}
{c1, c2, c3}

Figure 4. The staged configuration semantics
illustrated.

Theorem 9 (Incompleteness of transformation rules)
The transformation rules shown in Figure 2 are expressively
incomplete wrt. the semantics of Definition 7.

Proof. Consider a diagram consisting of a parent feature
〈2..2〉-decomposed with three children a, b, c. It is not pos-
sible to express the σi consisting of {a, b} and {b, c}, by
starting at σ1 =

{{a, b}, {a, c}, {b, c}} and using the pro-
posed transformation rules (since removing one feature will
always result in removing at least two configurations). �

Note that this is not necessarily a bad thing, since Czar-
necki et al. probably chose to only include transformation
steps that implement the most frequent usages. However,
the practical consequences of this limitation need to be as-
sessed empirically.

4.2 Adding levels

Section 4.1 only deals with dynamic aspects of staged
configuration of a single diagram. If we want to generalise
this to MLSC, we need to consider multiple diagrams and
links between them. To do so, there are two possibilities:
(1) define a new abstract syntax, that makes the set of di-
agrams and the links between them explicit, or (2) encode
this information using the syntax we already have.

We chose the latter option, mainly because it allows to
reuse most of the existing definitions and infrastructure, and
because it can more easily be generalised. Indeed, a set of
FDs, linked with conditions of the types defined in Table 2,
can be represented as a single big FD. The root of each indi-
vidual FD becomes a child of the root of the combined FD.

taxGateway1
G1

certiTax1
T1

taxExpress1
E1

cyberSource
CS

cyberSource1
S1

taxGateway2
G2

certiTax2
T2

taxExpress2
E2

cyberSource
CS

cyberSource2
S2

totalOrder2
O2

lineItems2
I2

calcMethod2
M2

serviceID2
D2

repBrkdwn2
B2

taxGateway
G

⎧⎨
⎩

¬T1 ⇒ ¬T2

¬E1 ⇒ ¬E2

¬S1 ⇒ ¬S2

L1 L2

Figure 5. Example of Figure 3 in LDynFD.

The root is and-decomposed and the inter-level links are
represented by Boolean formulae. To keep track of where
the features in the combined FD came from, the level infor-
mation will be made explicit as follows.

Definition 10 (Dynamic syntactic domain LDynFD)
LDynFD consists of 7-tuples (N, P, L, r, λ, DE, Φ),
where:

• N, P, r, λ, DE, Φ follow Definition 1,

• L = L1...L� is a partition of N \ {r} representing the
list of levels.

So that each d ∈ LDynFD satisfies the well-formedness
rules of Definition 1, has an and-decomposed root, and
each level Li ∈ L:

• is connected through exactly one node to the global
root:∃!n∈Li • (r, n)∈DE, noted hereafter root(Li),

• does not share decomposition edges with other levels
(except for the root): ∀(n, n′) ∈ DE • (n ∈ Li ⇔
n′ ∈ Li) ∨ (n = r ∧ n′ = root(Li)),

• is itself a valid FD, i.e. (Li, P ∩ Li, root(Li),
λ ∩ (Li → N × N), DE ∩ (Li × Li), ∅) satisfies
Definition 1.4

Figure 5 illustrates how the example of Figure 3 is repre-
sented in LDynFD. Note that, for the purpose of this paper,
we chose an arbitrary concrete syntax for expressing levels,
viz. the dotted lines. This is meant to be illustrative, since
a tool implementation should rather present each level sep-
arately, so as to not harm scalability.

Given the new syntactic domain, we need to revise the
semantic function. As for the semantic domain, it can re-
main the same, since we still want to reason about the pos-
sible configuration paths of an FD. The addition of multiple

4The set of constraints here is empty because it is not needed for valid-
ity verification.

VaMoS'09

56

levels, however, requires us to reconsider what a legal con-
figuration path is. Indeed, we want to restrict the configura-
tion paths to those that obey the levels specified in the FD.
Formally, this is defined as follows.

Definition 11 (Dynamic FD semantics [[d]]
DynF D

) Given
an FD d ∈ LDynFD, [[d]]

DynF D
returns all paths π that are

legal wrt. Definition 7, i.e. π ∈ [[d]]
CP

, and for which exists
a legal level arrangement, that is π, except for its initial
stage, can be divided into � (= |L|) levels: π = σ1Σ1..Σ�,
each Σi corresponding to an Li such that:

(11.1) Σi is fully configured: |final(Σi) |Li
| = 1, and

(11.2) ∀σjσj+1 • π = ...σjσj+1... and σj+1 ∈ Σi, we have

(σj \ σj+1) |Li
⊆ (σj |Li

\ σj+1 |Li
).

As before, this will be noted π ∈ [[d]]
DynF D

, or π |=
DynF D

d.

We made use of the following helper.

Definition 12 (Final stage of a level Σi) For i = 1..�,

final(Σi)
�
=

⎧⎪⎪⎨
⎪⎪⎩

last(Σi) if Σi = ε

final(Σi−1) if Σi = ε and i > 1

σ1 if Σi = ε and i = 1

The rule (11.2) expresses the fact that each configuration
deleted from σj (i.e. c ∈ σj \σj+1) during level Li must be
necessary to delete one of the configurations of Li that are
deleted during this stage. In other words, the set of deleted
configurations needs to be included in the set of deletable
configurations for that level. The deletable configurations
in a stage of a level are those that indeed remove configura-
tions pertaining to that level (hence: first reduce to the level,
then subtract), whereas the deleted configurations in a stage
of a level are all those that were removed (hence: first sub-
tract, then reduce to level to make comparable). Intuitively,
this corresponds to the fact that each decision has to affect
only the level at which it is taken.

4.3 Illustration

Let us illustrate this with the FD of Figure 5, which we
will call d, itself being based on the example of Figure 3
in Section 3. The semantic domain of [[d]]

DynF D
still con-

sists of configuration paths, i.e. it did not change from
those of [[d]]

CP
shown in Figure 4. Yet, given that [[d]]

DynF D

takes into account the levels defined for d, not all possi-
ble configuration paths given by [[d]]

CP
are legal. Namely,

those that do not conform to rules (11.1) and (11.2) need
to be discarded. This is depicted in Figure 6, where the
upper box denotes the staged configuration semantics of d

Table 3. Validation of level arrangements.

πi = σ1 σ2i
σ3i

Σ1 Σ2

Σ1 Σ2

Σ1 Σ2

Σ1 Σ2

Σ1 Σ2

Σ1 Σ2

πj = σ1 σ2j
σ3j

Level arrangement for path rule (11.1) rule (11.2)

true

/

true

true

true

true

false

false

false

false

false

/

([[d]]
CP

), and the lower box denotes [[d]]
DynF D

, i.e. the subset
of [[d]]

CP
that conforms to Definition 11.

We now zoom in on two configuration paths πi, πj ∈
[[d]]

CP
, shown with the help of intermediate FDs in the lower

part of Figure 6. As noted in Figure 6, πj is not part of
[[d]]

DynF D
since it violates Definition 11, whereas πi satis-

fies it and is kept. The rationale for this is provided in Ta-
ble 3. Indeed, for πj , there exists no level arrangement that
would satisfy both rules (11.1) and (11.2). This is because
in σ2j , it is not allowed to remove the feature B2, since it
belongs to L2, and L1 is not yet completed. Therefore, ei-
ther there is still some variability left in the FD at the end of
the level, which is thus not fully configured (the first pos-
sible arrangement of πj in Table 3 violates rule (11.1)), or
the set of deleted configurations is greater than the set of
deletable configurations (the other two arrangements of πj

in Table 3, which violate rule (11.2)). For πi, on the other
hand, a valid level arrangement exists and is indicated by
the highlighted line in Table 3. More details for this illus-
tration are provided in [3].

5 Towards automation and analysis

This section explores properties of the semantics we just
defined and sketches paths towards automation.

5.1 Properties of the semantics

In Definition 11, we require that it has to be possible to
divide a configuration path into level arrangements that sat-
isfy certain properties. The definition being purely declara-
tive, it does not allow an immediate conclusion as to how
many valid level arrangements one might find. The fol-
lowing two theorems show that there is exactly one. Their
proofs can be found in [3].

VaMoS'09

57

G2

T2 E2 S2

O2 I2

M2 D2 B2

G L2

G1

T1 E1 S1

L1

σ2iσ1 σ3i

⎧⎨
⎩

¬T1 ⇒ ¬T2

¬E1 ⇒ ¬E2

¬S1 ⇒ ¬S2

πi =

G2

E2 S2

D2 B2

G L2

G1

E1 S1

L1

G2

E2

D2

G L2

G1

E1 S1

L1

G2

T2 E2 S2

O2 I2

M2 D2 B2

G L2

G1

T1 E1 S1

L1

⎧⎨
⎩

¬T1 ⇒ ¬T2

¬E1 ⇒ ¬E2

¬S1 ⇒ ¬S2

G2

E2 S2

D2

G L2

G1

E1 S1

L1

G2

E2

D2

G L2

G1

E1 S1

L1

σ1 σ2j σ3jπj =
FD FD FD

FD FD FD

[[d]]
CP

= . . . , πi = σ1σ2i
σ3i

, . . . , πj = σ1σ2j
σ3j

, . . .

[[d]]
DynF D

= . . . , πi = σ1σ2i
σ3i

, . . .
Definition 11

with

Figure 6. Example of Figure 3 in [[d]]
CP

and [[d]]
DynF D

.

Theorem 13 (Properties of level arrangements) Given a
diagram d ∈ LDynFD, each configuration path π ∈
[[d]]

DynF D
with Σ1..Σ� as a valid level arrangement satis-

fies the following properties.

(13.1) If σj ∈ Σi then ∀k < j • |σk |Li
| > |σj |Li

|.
(13.2) If σj ∈ Σi and σj = last(Σi) then |σj |Li

| > 1.

(13.3) If |σj |Li
| = 1 then ∀k > j • σk ∈ Σi.

(13.4) If |σj |Li
| = 1 then ∀k > j • |σk |Li

| = 1.

Theorem 14 (Uniqueness of level arrangement) For any
diagram d ∈ LDynFD, a level arrangement for a configu-
ration path π ∈ [[d]]

DynF D
is unique.

An immediate consequence of this result is that it is
possible to determine a legal arrangement a posteriori, i.e.
given a configuration path, it is possible to determine a
unique level arrangement describing the process followed
for its creation. Therefore, levels need not be part of the se-
mantic domain. This result leads to the following definition.

Definition 15 (Subsequence of level arrangement)
Given an FD d and Li ∈ L, π ∈ [[d]]

DynF D
, sub(Li, π)

denotes the subsequence Σi of π pertaining to level Li for
the level arrangement of π that satisfies Definition 11.

Continuing with Definition 11, remember that rule (11.2)
requires that every deleted configuration be deletable in the
stage of the associated level. An immediate consequence
of this is that, unless we have reached the end of the con-
figuration path, the set of deletable configurations must not
be empty, established in Theorem 16. A second theorem,
Theorem 17, shows that configurations that are deletable in
a stage, are necessarily deleted in this stage.

Theorem 16 A necessary, but not sufficient replacement
for rule (11.2) is that (σj |Li

\ σj+1 |Li
) = ∅.

Proof. Immediate via reductio ad absurdum. �

Theorem 17 For rule (11.2) of Definition 11 holds

(σj \ σj+1) |Li
⊆ (σj |Li

\ σj+1 |Li
)

⇒ (σj \ σj+1) |Li
= (σj |Li

\ σj+1 |Li
).

Proof. In [3], we prove that always

(σj \ σj+1) |Li
⊇ (σj |Li

\ σj+1 |Li
).

which means that if in addition (σj \ σj+1) |Li
⊆ (σj |Li

\
σj+1 |Li

) holds, both sets are equal. �

VaMoS'09

58

In Theorem 9, Section 4.1, we showed that the transfor-
mation rules of Figure 2, i.e. those proposed in [5] that re-
late to constructs formalised in the abstract syntax of Defini-
tion 10, are not expressively complete wrt. the basic staged
configuration semantics of Definition 7. The two follow-
ing theorems provide analogous results, but for the dynamic
FD semantics. Basically, the property still holds for the dy-
namic FD semantics of Definition 11, and a similar property
holds for the proposed inter-level link types of Table 2.

Theorem 18 (Incompleteness of transformation rules)
The transformation rules shown in Figure 2 are expressively
incomplete wrt. the semantics of Definition 11.

Proof. We can easily construct an example for LDynFD;
it suffices to take the FD used to prove Theorem 9 and to
consider it as the sole level of a diagram. From there on, the
proof is the same. �

Theorem 19 (Incompleteness of inter-level link types)
The inter-level link types proposed in [5] are expressively
incomplete wrt. the semantics of Definition 11.

Proof. Basically, the proposed inter-level link types always
have a sole feature on their right-hand side. It is thus im-
possible, for example, to express the fact that if some con-
dition φ is satisfied for level Li, all configurations of level
Li+1 that have f will be excluded if they also have f ′ (i.e.
φ ⇒ (f ′ ⇒ ¬f)). �

5.2 Implementation strategies

A formal semantics is generally the first step towards an
implementation, serving basically as a specification. In the
case of FDs, two main types of tools can be considered:
modelling tools, used for creating FDs, and configuration
tools, used during the product derivation phase. Since the
only difference between LFD and LDynFD is the addition
of configuration levels, it should be rather straightforward
to extend existing FD modelling tools to LDynFD. In ad-
dition, the core of the presented semantics deals with con-
figuration. Let us therefore focus on how to implement a
configuration tool for LDynFD, i.e. a tool that allows a
user to configure a feature diagram d ∈ LDynFD, allow-
ing only the configuration paths in [[d]]

DynF D
, and prefer-

ably without having to calculate the whole of [[d]]
F D

, [[d]]
CP

or [[d]]
DynF D

. Also note that, since we do not consider our-
selves experts in human-machine interaction, we restrict the
following discussion to the implementation of the semantics
independently from the user interface. It goes without say-
ing that at least the same amount of thought needs to be
devoted to this activity [2].

The foundation of a tool, except for purely graphical
ones, is generally a reasoning back-end. Mannion and Ba-
tory [9, 1] have shown how an FD d can be encoded as a

Boolean formula, say Γd ∈ B(N); and a reasoning tool
based on this idea exists for LFD [16]. The free variables
of Γd are the features of d, so that, given a configuration
c ∈ [[d]]

F D
, fi = true denotes fi ∈ c and false means

fi ∈ c. The encoding of d into Γd is such that evaluating
the truth of an interpretation c in Γd is equivalent to check-
ing whether c ∈ [[d]]

F D
. More generally, satisfiability of

Γd is equivalent to non-emptiness of [[d]]
F D

. Given this en-
coding, the reasoning back-end will most likely be a SAT
solver, or a derivative thereof, such as a logic truth mainte-
nance system (LTMS) [6] as suggested by Batory [1].

The configuration tool mainly needs to keep track of
which features were selected, which were deselected and
what other decisions, such as restricting the cardinality of
a decomposition, were taken. This configuration state basi-
cally consists in a Boolean formula Δd ∈ B(N), that cap-
tures which configurations have been discarded. Feasibil-
ity of the current configuration state, i.e. whether all deci-
sions taken were consistent, is equivalent to satisfiability of
Γd ∧Δd. The configuration process thus consists in adding
new constraints to Δd and checking whether Γd∧Δd is still
satisfiable.

A tool implementing the procedure sketched in the pre-
vious paragraph will inevitably respect [[d]]

F D
. In order to

respect [[d]]
CP

, however, the configuration tool also needs to
make sure that each time a decision δ is taken, all other deci-
sions implied by δ be taken as well, for otherwise rule (7.2)
might be violated in subsequent stages. This can easily be
achieved using an LTMS which can propagate constraints as
the user makes decisions. This way, once she has selected
a feature f that excludes a feature f ′, the choice of f ′ will
not be presented to the user anymore. The LTMS will make
it easy to determine which variables, i.e. features, are still
free and the tool should only present those to the user.

The extended procedure would still violate [[d]]
DynF D

,
since it does not enforce constraints that stem from level
definitions. A second extension is thus to make sure that
the tool respects the order of the levels as defined in d, and
only presents choices pertaining to the current level Li until
it is dealt with. This means that the formula of a decision δ
may only involve features f that are part of the current level
(rule (11.2)). It also means that the tool needs to be able
to detect when the end of a level Li has come (rule (11.1)),
which is equivalent to checking whether, in the current state
of the LTMS, all of the f ∈ Li are assigned a fixed value.

Given these guidelines, it should be relatively straight-
forward to come up with an architecture and some of the
principal algorithms for a tool implementation.

6 Conclusion and future work

We introduced a dynamic formal semantics for FDs that
allows reasoning about its configuration paths, i.e. the con-

VaMoS'09

59

figuration process, rather than only about its allowed con-
figurations. Extending the basic dynamic semantics with
levels yields a semantics for MLSC. The contribution of the
paper is therefore a precise and formal account of MLSC
that makes the original definition [5] more explicit and re-
veals some of its subtleties and incompletenesses. Based on
the semantics we show some interesting properties of con-
figuration paths and outline an implementation strategy that
uses SAT solvers as the reasoning back-end.

A number of extensions to the dynamic FD seman-
tics can be envisioned. From the original definition of
MLSC [5], it inherits the assumption that levels are con-
figured one after the other in a strict order until the final
configuration is obtained. One way to extend the seman-
tics is to relax this restriction and to allow levels that are
interleaved, or run in parallel. The semantics also assumes
that the configuration finishes at some point. This is not the
case for dynamic or self-adaptive systems. Those systems
have variability left at runtime, allowing them to adapt to
a changing environment. In this case, configuration paths
would have to be infinite. Another extension we envision
is to add new FD constructs (like feature cardinalities and
attributes) to the formalism. The ultimate goal of our en-
deavour is naturally to develop a configurator that would be
compliant with the formalism, verify properties and com-
pute various indicators.

These points are partly discussed in Section 2 and more
extensively in [3]. They will be elaborated on in our future
work, where we also intend to tackle the problem of FD
evolution taking place during configuration.

Acknowledgements

This work is sponsored by the Interuniversity Attraction
Poles Programme of the Belgian State of Belgian Science
Policy under the MoVES project and the FNRS.

References

[1] D. S. Batory. Feature Models, Grammars, and Propo-
sitional Formulas. In SPLC’05, pages 7–20, 2005.

[2] C. Cawley, D. Nestor, A. Preußner, G. Botterweck,
and S. Thiel. Interactive visualisation to support prod-
uct configuration in software product lines. In Va-
MoS’08, 2008.

[3] A. Classen, A. Hubaux, and P. Heymans. A for-
mal semantics for multi-level staged configuration.
Technical Report P-CS-TR SPLBT-00000002, PRe-
CISE Research Center, University of Namur, Na-
mur, Belgium, November 2008. Download at
www.fundp.ac.be/pdf/publications/66426.pdf.

[4] K. Czarnecki, S. Helsen, and U. W. Eisenecker. For-
malizing cardinality-based feature models and their

specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration through specialization and multi-level
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[6] K. Forbus and J. de Kleer. Building Problem Solvers.
The MIT Press, 1993.

[7] D. Harel and B. Rumpe. Modeling languages: Syntax,
semantics and all that stuff - part I: The basic stuff.
Technical Report MCS00-16, Faculty of Mathemat-
ics and Computer Science, The Weizmann Institute of
Science, Israel, September 2000.

[8] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and
M. Huh. Form: A feature-oriented reuse method with
domain-specific reference architectures. Annales of
Software Engineering, 5:143–168, 1998.

[9] M. Mannion. Using First-Order Logic for Product
Line Model Validation. In SPLC’02, LNCS 2379,
pages 176–187, San Diego, CA, Aug. 2002. Springer.

[10] K. Pohl, G. Bockle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer, July 2005.

[11] R. Rabiser, P. Grunbacher, and D. Dhungana. Sup-
porting product derivation by adapting and augment-
ing variability models. In SPLC’07, pages 141–150,
Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[12] M.-O. Reiser and M. Weber. Managing highly com-
plex product families with multi-level feature trees.
In RE’06, pages 146–155, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[13] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Feature Diagrams: A Survey and A
Formal Semantics. In RE’06, pages 139–148, Min-
neapolis, Minnesota, USA, September 2006.

[14] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Generic semantics of feature diagrams.
Computer Networks, page 38, 2006.

[15] J. E. Stoy. Denotational Semantics: The Scott-
Strachey Approach to Programming Language The-
ory. MIT Press, Cambridge, MA, 1977.

[16] J.-C. Trigaux and P. Heymans. Varied feature diagram
(vfd) language: A reasoning tool. Technical Report
EPH3310300R0462 / 215315, PRECISE, University
of Namur, January 2007. PLENTY: Product Line EN-
gineering of food TraceabilitY software.

VaMoS'09

60

A Model for Trading off Flexibility and Variability in Software Intensive
Product Development

Wim Codenie1, Nicolás González-Deleito1, Jeroen Deleu1, Vladimir Blagojevi�1, Pasi Kuvaja2,
and Jouni Similä2

1Software Engineering Group, Sirris, Belgium
2Department of Information Processing Science, University of Oulu, Finland

wim.codenie@sirris.be

Abstract

Flexible development and product variability are

two different challenges experienced by an increasing
number of software intensive product builders. These
challenges are often mixed, and have different
meanings depending on the development model used
by software intensive product builders to develop a
product. Furthermore, the context in which companies
operate can force them to transition between software
product development models, and to re-interpret
flexibility and variability in the context of the new
development model. This paper explains the difference
between flexible development and product variability,
and provides a tradeoff model to assist companies in
improving flexibility and variability in the framework
of their specific context.

1. Introduction

Flexible development (flexibility) and product
variability (variability) have become strategic
challenges in software intensive product development.
Although they are often mixed, both are fundamentally
different problems. Flexible development is the ability
to efficiently respond to new market opportunities in an
effective manner (i.e. the speed by which ideas are
brought to the market). Product variability is the ability
to offer a large number of product variants to
customers in an efficient manner. For many software
intensive product builders, being able to address one or
even both of these challenges can result in a
competitive advantage.

Given the large available state of the art in
flexibility and variability management techniques, it is
remarkable that implementing an effective flexibility

and variability strategy still poses so many challenges
to software intensive product builders [27] [12].

An empirical study conducted by Sirris at 57
software product builders in Belgium [12] reveals two
root causes for these difficulties. A first reason is that
companies often try to apply the state of the art in
flexibility and variability “out of the box”. In other
words, they neglect to interpret the flexibility and
variability challenges in the scope of their specific
context, i.e. the product development model they use.
Four basic product development models are considered
in this paper: project based development, technology
platform development, customized product
development and out of the box product development.

A second reason is caused by changes in the
business environment and in the technological context,
driving companies to change their product strategy.
Few products remain built using the same product
development model for a long period of time. Instead,
companies are undergoing transitions towards other
development models. As a consequence, they need to
re-interpret flexibility and variability each time the
development model changes.

The goal of this paper is to provide insights in the
dependence of flexibility and variability on software
product development models. This paper presents a
tradeoff model to assist companies in improving
flexibility and variability, by selecting the optimal
development model for flexibility and variability
and/or optimizing flexibility and variability within the
chosen model.

This paper is organized as follows. Section 2
introduces software intensive product development.
Section 3 provides an overview of the four basic
software product development models considered in
this paper. Section 4 introduces flexibility and
variability and provides an argumentation why they are
becoming so dominant. It also presents an overview of

VaMoS'09

61

the state of the art in both domains. Section 5
introduces the static view on flexibility and variability:
the different meaning of flexibility and variability
depending on the product development model in use.
Section 6 extends this to the dynamic view by
observing that many companies are facing transitions
between the software product development models
requiring a re-interpretation of flexibility and
variability. Section 7 introduces the core of the tradeoff
model.

2. Software intensive product development

Product development is the set of activities starting
with the perception of a market opportunity and ending
in the production, sales, and delivery of a product [36].
Software is playing an increasingly important role in
product development and has become a major
instrument for product innovation [20] [30]. Because of
this, software is ascending the value chain of products.
This is true for many sectors, including sectors that
traditionally are not associated with software. European
studies [20] forecast an increase in the number of
products that will become software enabled, and a
strong global increase in the size of software
development.

Throughout the paper, the term software intensive
product is used to denote a product that contains a
significant software component. Companies that
produce these products are called software intensive
product builders and the term software intensive
product development is used to refer to product
development as applied by software intensive product
builders.

3. Software product development models

Companies use different models to develop and
deliver their software intensive products to the market.
At the current stage of the research, the four models
described below are considered. They can be classified
according to the ratio of domain engineering and
application engineering they require (Figure 1, note
that the relative position of the four models is only
indicative). Domain engineering encompasses all the
engineering activities related to the development of
software artifacts reusable across a set of products (i.e.
activities done for groups of customers such as making
a general purpose product). Application engineering
encompasses all the engineering activities related to the
development of one, specific software product (i.e. all
the effort done for a single customer such as
developing a tailor made solution) [7] [10] [28].

���������	
��
�
����

�	���
��
�
����

�������	
���	����������

����������	��������	��������������������	��������	����������

���������	������	����������

���	��	���	
��	������	����������

Figure 1. The four software product
development models

Two other terms used in the description of the
different models are customization and configuration.
In this paper the term customization is used to refer to
the activity of changing a (generic) product into a
solution satisfying the specific needs of a customer (by
either adding new functionality, or changing or
removing existing functionality). In essence,
customization creates a new product variant that did
not exist before. Configuration is choosing among a
predefined set of product variants (e.g. by filling in
configuration parameters).

Project based development. This model is used
when products are developed on a project basis. In this
model, customers do not find the desired solution on
the market and commission its development to a
software intensive product builder. Products developed
in this model aim therefore at addressing a very
specific demand that needs to perfectly fit in the
context of the customer. Software intensive product
builders applying this model usually build these
products from scratch, independently from their other
possibly similar products. In some cases, excerpts from
other projects might be used to build a new product.
This results in ad-hoc reuse between projects. In this
model, the main focus is on delivering on time, within
budget and with a given quality level.

Technology platform development. In this model,
software intensive product builders aim to build a
dedicated platform that solves a specific technological
problem (e.g. database persistence, transactional event
handling, etc.). Platforms aim to be building blocks of
larger products and can either be for internal use (i.e. to
be included in other products developed by the
platform builder) or for external use (i.e. to be included
in products developed by other companies). Companies
developing a platform for internal use do it because
they need the technology, but find no solution on the
market. On the other hand, companies developing a
platform to be used in third party products are
constantly searching for new opportunities for their

VaMoS'09

62

technology. Once such an opportunity is found, the
challenge is to integrate the platform with other
products as fast and efficiently as possible. Embedding
the platform in the encapsulating product typically
involves a high degree of integration activities from
both the platform builder and the customer.

Customized product development. This model is
used by software intensive product builders that
develop products that need to be further adapted to suit
the specific needs of customers. These companies
typically operate in markets in which customers seem
to have conflicting expectations. On the one hand,
customers expect solutions with qualities associated
with product development (e.g. proven robustness,
immediate availability, proven stability, a sophisticated
maintenance/support network, etc.). On the other hand,
they expect solutions with qualities associated with
tailor made project development (e.g. possibility of
total customer solution, every request of the customer
is 100% satisfied by the solution, etc.). In order to
fulfill these expectations, product builders applying this
model focus on developing a common product base
(e.g. some kind of “semi-finished” product) that
contains the core functionality shared across all the
potential customers. This product base is used to derive
products for customers (customization) – by either the
product builder itself or by a third party. Characteristic
of the markets these product builders are active in is
that a high degree of commonalities can be found
between customer needs (e.g. 80%) but at the same
time, customers can have very different and opposing
needs for the (smaller) remaining part (e.g. 20%).

Out of the box product development. In this
model, software intensive product builders strive to
make a generic product that can suit the needs of many
customers. The difference with the customized product
development model is that no customization (coding) is
done by the product builder for individual customers.
The assumption is that customers will be prepared to
sacrifice features in favor of, for example, lower cost
and product stability. For out of the box product
builders, finding the optimal degree of product
configurability is often a challenge. Configurability can
take many forms: support for different regulations (e.g.
region specific features, legislation), support for
different platforms (e.g. Windows versus Linux),
support for different license models (e.g. free edition,
professional edition, home edition), or personalization
of the product.

Software intensive product builders do not

necessarily restrict themselves to only one of the above
product development models. Companies that offer a

rich product portfolio can apply a different software
product development model for each product in the
portfolio, depending on parameters such as market
situation and product maturity.

Other classifications are described in the literature.
Bosch [7] considers seven maturity levels for
architecture-centric, intra-organization reuse in the
context of software product lines. Cusumano [13]
considers two kinds of companies: platform leaders
and platform complementors.

A similarity between the above models and some of
the maturity levels for software product lines defined
by Bosch [7] can be observed. Unlike Bosch, the
described four software product development models
give no indication about maturity. For example, the out
of the box product development model is not
necessarily more mature than the project based
development model, and vice versa. In a very small
niche market (or even for one customer with very
specific needs) a company may benefit to develop a
product from scratch in a project based manner. This
will be a valid strategy if customers are prepared to pay
the premium price for getting exactly what they need
and if little commonality exists between different
customers’ needs. Maturity must be interpreted
differently for each model, e.g. some companies might
be very mature in applying the project based
development model while others might not.

4. Flexibility and variability in software
intensive product development

For many software intensive product builders
resolving flexibility and/or variability is becoming a
necessity to remain competitive.

4.1. Product variability: the consequence of
embracing customer intimacy

Driven by customers that are increasingly cost-
conscious and demanding, a large number of
companies adhere to customer intimacy: a strategy of
continually tailoring and shaping products and services
to fit an increasingly fine definition of the customer
[35]. This has become a business strategy that is
adopted by 1 out of 2 companies [23]. When applied
on a large scale, customer intimacy leads to a trend
called mass customization: producing in large volumes,
but at the same time giving each individual customer
something different. Achieving customer intimacy and
especially mass customization leads in most cases to a
large number of product variants per product base. This

VaMoS'09

63

phenomenon is called product variability, the ability to
offer a large number of product variants to customers.

As an increasing number of products will become
software and ICT enabled, the variability aspects of
products will be more and more situated at the software
level. This drives an increasing number of companies
to raise the variability level in their software. Forecasts
predict that the ability to implement an efficient and
effective variability strategy will be an important
prerequisite to succeed or even survive as a software
intensive product builder [19] [23]. Unfortunately,
many product builders do not reach the desired level of
variability or fail to do so in a cost efficient manner.
This confronts software intensive product builders with
a challenging engineering paradox:

Variability Paradox: How to remain efficient and
effective while at the same time offer a much richer
product variety to the customers?

4.2. Flexible development: the consequence of
embracing innovation

More and more the economy is evolving from a
knowledge based economy to an economy based on
creativity and innovation [24]. A study by Siemens
illustrates that today up to 70% of the revenue of
product builders is generated by products or product
features that did not exist 5 years ago [30]. On top of
this, 90% of the managers of companies in sectors like
aviation, automotive, pharmaceutical industry and
telecommunication consider innovation as essential to
reach their strategic objectives [15]. The “Innovator’s
dilemma” [9] is in many cases no longer a dilemma for
companies that build products, as innovation has
become an absolute necessity in order to deal with
global challenges and trends of the future.

An important observation to make in that context is
that software is increasingly being used as an
instrument to realize that innovation: software as
engine for innovation. This trend is not only valid
within specific niche markets, it is relevant for a wide
range of sectors [20] [25]. Software is no longer a
supporting technology, but it takes an essential role in
the process of value creation.

Being “the first” is important if one wants to be
innovative. Because of that, many companies are
competing in a “rush to market” race. The product life
cycle is shrinking at a steady pace, and few are the
products today with a life cycle of one year or longer.
The principle of being first mover, the rush to market
race and the innovation dilemma lead to a need for
flexibility.

Flexible development: the ability to quickly
respond to new market needs and customer requests. It
is all about increasing the speed by which innovations
and ideas are brought to the market. Because software
is “invading” in more products, flexibility is becoming
a major issue in software development.

4.3. Flexibility and variability are different

Although flexibility and variability are very
different by nature, they are often mixed. On the one
hand, product variability is an attribute of the product
(or a product base or a platform). Increasing the degree
of variability of a product corresponds to adding
variation points to that product. A variation point is a
product option. It describes a decision that can be
postponed. A variation point can be fixed by making a
choice between a number of options. On the other
hand, flexible development is an attribute of the
engineering process. Being flexible basically means
dealing with uncertainty, with the unexpected, and
being able to efficiently adapt to changes and to new
contexts.

Sometimes flexibility is increased by introducing
variability. In [33] for example, modularity in product
architecture is put forward as an anticipation strategy to
become more flexible. The reverse (increasing
variability by introducing flexibility) also happens. In
Extreme programming [5] for instance, extensive
upfront reasoning about future changes (with the
purpose of anticipating variability) is discouraged in
favor of installing a process that allows smoother
software evolutions. The “extreme” view is that if you
are flexible enough you do not need to be variable.

For some companies only variability matters, for
others only flexibility matters, and for some others both
matter. Also, companies exist that make products for
which neither variability nor flexibility matter. A study
conducted by Sirris at 57 companies [12] reveals that
for 60% of the surveyed companies flexibility is
important (i.e. the company experienced difficulties
managing the challenge and it foresaw considerable
optimizations if the challenge could be managed
better), for 45% of companies variability is important
and for 30% both challenges are important.

4.4. State of the art in product variability

Variability can be addressed from different
perspectives. From the technology perspective, object-
oriented frameworks [1], design patterns [16] and
aspect-oriented development [22] have progressively
been developed to provide better support for reuse and

VaMoS'09

64

variability. More recently, generative techniques [14]
(a.k.a. model driven development [32]) aim to generate
code in an automated way from high-level
specifications. Some of these techniques can be used
also to generate product variants from a common
product.

Another relevant research area is the domain of
configuration techniques. This ranges from simple
configuration strategies based on parameterization (e.g.
XML) up to fundamental research in configuration
languages, consisting in using domain specific
languages for configuration [26]. The goal is to extend
products with languages to allow more complex
configurations than is possible with conventional
configuration parameters.

From the engineering perspective, various modeling
techniques for variability have been proposed both by
academia and industry [28]. Many of them have their
roots in feature modeling (e.g. FODA), but significant
contributions also have come from related areas
including configuration management, domain analysis,
requirements engineering, software architecture, formal
methods, and domain specific languages [21] [4].

Finally, software product lines [10] have received
extensive attention during the last few years (an issue
of CACM has even been devoted to that topic [2]), and
an increasing number of companies are considering
adopting them.

4.5. State of the art in flexible development

Flexible development, the ability to quickly respond
to new market needs and customer requests, is typically
achieved through agile development methods. These
methods basically promote communication between
individuals, collaboration with customers, and frequent
product increments with business value [6] [3].
Examples of popular agile methods are Scrum [31] and
Extreme programming [5]. Scrum focuses mostly on
agile management mechanisms. This is in contrast to
Extreme programming for example, where the focus is
more on providing integrated software engineering
practices.

Another approach to achieve flexibility is Lean
development [29]. It aims at improving the
development process by removing any activity not
providing value (waste elimination).

Finally, another view presented in the literature is
that flexibility can be achieved by creating (flexible)
adaptable artifacts of a common product base [28].
According to our definition, this is actually a strategy
of increasing flexibility by introducing variability; the
consequences are discussed below in section 7.

5. A static view on flexible development
and product variability

This section argues that there is not such a thing as
“good software engineering” in general. Software
engineering, and more specifically, flexibility and
variability have different meanings depending on the
software product development model in use.

Most software intensive product builders consider
software engineering as a broad domain that consists of
a number of disciplines in which a large number of
evolving software technologies can be applied (Figure
2). An exhaustive overview of the software engineering
knowledge areas (disciplines) is provided in SWEBOK
[18].

Knowledge areas
& disciplines

Software
technologies

Software
Product

Software Engineering
e.g. software
requirements

e.g. object orientation

Knowledge areas
& disciplines

Software
technologies

Software
Product

Software Engineering
e.g. software
requirements

e.g. object orientation

Figure 2. Software engineering as traditionally
perceived by software intensive product
builders

In practice, the various software engineering
disciplines should be interpreted differently depending
on the software product development model. For
example, in the project based development model,
requirements engineering boils down to gathering
specific needs of a single customer (focus is on
effective interviewing and understanding). In contrast,
when making an out of the box product there is no
direct contact with customers. Requirements
engineering involves collaboration between different
stakeholders to understand the domain (the focus is on
decision making and conflict resolution). A similar
analysis can be made for other disciplines of software
engineering, such as architecture, testing, project
management, etc.

VaMoS'09

65

Knowledge areas
& disciplines

Software
technologies

Software
Product

Software Engineering
Software Product

Development Models

Figure 3. Software engineering through the
glasses of the applied software product
development model

Many companies consider “good software
engineering” as a standalone domain, independent from
the product development model. They neglect to
interpret the software engineering disciplines in
function of the used software product development
model.

Understanding and dealing with the different
interpretations of the software engineering disciplines
in the context of a software product development
model is challenging. Software intensive product
builders should look at the domain of software
engineering through the glasses of the product
development model they apply (Figure 3). For software
product lines, the Software Engineering Institute (SEI)
defines a framework that lists the practice areas that
need to be mastered in order to successfully create a
software product line [34]. The practice areas explain
how software engineering disciplines need to be
interpreted for software product lines.

Furthermore, addressing the flexibility and
variability challenges is not a responsibility of a single
software engineering discipline. Usually it requires
well aligned actions taken across several different
disciplines at the same time. Flexibility and variability
cross cut the disciplines. For example, introducing
more variation points affects requirements engineering
(one must understand what the variation points are),
architecture (e.g. introduce a framework approach), but
also the testing process (to deal with the combinatorial
explosion of test scenarios that are the consequence of
many variation points).

Because the interpretation of the software
engineering disciplines depends on the applied
software product development model, and the
challenges of flexibility and variability cross-cut the
software engineering disciplines, addressing flexibility
and variability is different in the context of each
software product development model.

6. A dynamic view on flexible development
and product variability

Companies might be in a situation where they can
afford to remain in the same software product
development model for a longer period of time.
Unfortunately, for many companies this is not the case.
Evolutions in the business environment and the
technological context can force a company to undergo
a transition towards a different software product
development model (see later in this section). For these
companies choosing a flexibility and variability
approach is not a one-off decision but a recurring one.

Companies are often not globally aware of an
ongoing transition as it might be triggered by certain
decisions that are taken by individuals or sub-
departments of the organization (i.e. these transitions
happen implicitly). Because of this (global)
unawareness, companies neglect to re-interpret the
software engineering disciplines in function of the new
development model and as a consequence they also
neglect to re-interpret their flexibility and variability
approaches. This explains symptoms that companies
are faced with such as “software engineering practices
that seemed to work well in the past do not seem to
work anymore” (e.g. customer interviewing techniques
that worked well in a project based development
approach are no longer efficient to define an out of the
box product).

Deciding what the optimal model is and when to
initiate a transition to that model is difficult but
essential to remain effective and competitive. Several
trade-offs need to be made, and sometimes remaining
too long in the same model can be harmful.

In the remainder of this section an overview is given
of the business and technological phenomena that can
cause companies to transition (or to consider a
transition) from one software product development
model to another. These phenomena are occurring on a
massive scale as almost every company is affected by
at least one of them.

6.1. Increasing need for customer intimacy
(variability)

It seems that for realizing customer intimacy the
project based product development model is ideal.
Each customer wish can be realized during the projects,
without interference from other customers. Variability
is offered by providing every customer with a separate
product implementation. Applying the strategy of
customer intimacy [23] can therefore cause transitions
towards the project based development model (Figure

VaMoS'09

66

4). For example, companies developing out of the box
products might move into other models that offer more
customization opportunities.

6.2. Increasing need for bringing innovations
faster to the markets (flexibility)

It seems that for realizing flexible development, the
out of the box product development model is best
suited. When possible, this is a very fast way of
bringing solutions to customers: customers just buy the
product and start using it.

In order to increase the speed of development [15],
companies can consider transitioning towards the out of
the box product development model (Figure 4). For
example, a company doing project based development
might consider moving to a model in which more
domain engineering is involved so not every product
has to be made from scratch.
���������	
��
�
����

�	���
��
�
����

�������	
���	����������

����������	��������	����������

���������	������	����������

���	��	���	
��	������	����������

����	��	����������

��������	��������

Figure 4. Transitions caused by an increase in
customer intimacy and speed of innovation

6.3. Towards hybrid products: not too much
product, not too much service

Cusumano observes [13] that many organizations
are shifting to hybrid models that combine services
with products. Many companies that have a 100%
service offering today (e.g. consultancy) consider
combining these services with a product offering (e.g. a
tool). Companies that have a 100% product offering are
attempting to complement it with services (e.g. as a
reaction to decreasing product license revenue). This
trend can result in transitions towards the customized
product development model (Figure 5).

��������

������	��������

���������	
��
�
����

�	���
��
�
����

�������	
���	����������

����������	��������	��������������������	��������	����������

���������	������	����������

���	��	���	
��	������	����������

Figure 5. Transitions caused by combining
products and services

6.4. Transitions induced by technological
evolutions

Due to technological evolutions, products are no
longer standalone, but become “platforms” used in
other products/services (e.g. mashups, e.g. see [37]).
By opening an API of a proprietary closed product, an
entirely new range of combinations with other products
becomes possible. This trend causes companies to
transition to the platform model (Figure 6).

Other examples include transitions caused by the
maturing process of technologies (Figure 6). Early
adopter companies might not find mature COTS
technology implementations, and, as a consequence,
decide to build an (in-house) technology platform.
Although this can be a perfectly valid strategy at the
start, it can turn into a liability as soon as the state of
the art becomes sufficiently mature. When this
happens, companies might consider leaving the
technology platform model and move to another model.

�������

������
����������

��������

����������

��������	����������

���������	
��
�
����

�	���
��
�
����

������	����������

����������	��������	����������

Figure 6. Transitions caused by technology
maturation

VaMoS'09

67

7. A model for trading off flexibility and
variability

Flexibility and variability have become major points
of attention for many software intensive product
builders. In the previous sections two perspectives have
been analyzed. The static perspective reveals that
flexibility and variability should be interpreted
differently in each software product development
model. The dynamic perspective reveals that if a
change in the product strategy imposes a transition
towards another software product development model,
companies have to re-interpret their flexibility and
variability approaches. This, of course, is only the case
when speed of innovation or customer intimacy is
relevant.

To increase the levels of product variability and
flexibility, two strategies can be considered. The first
one is to consider moving to a different software
product development model that better supports the
flexibility and variability requirements. Flexibility and
variability seem to push companies in opposite
directions (Figure 4). If both are important, a
compromise has to be made (you can buy variability
for flexibility and vice versa). In sections 7.1 and 7.2,
the trade-offs that need to be made are discussed.

The second strategy is to improve flexibility and/or
variability within the model. Sometimes the current
development model is already the optimal one (taken
the product strategy and other trade-offs into account).
In that case, the only option is to improve flexibility
and/or variability within the model. Discussion about
this goes beyond the scope of this paper.

Figure 7 shows an overview of the proposed
tradeoff model to improve flexibility and variability.

��������	
��	
������	
�������

������
�	
���	�������	

������	
���������
�	

�����	��	
������	���	

�����
	
�������

�����	���	
��
�����

��������	
�����������	�
�	

����������	�����
	
���	
��	�����	

��
�	���	�������	�����	
��	�����������	�
�	

����������	��	
������
�	�	��������	
�
������	 ���	!"#	$!"%&

��������	
�����������	�
�	

����������	
�����
	���	

���
�	�����
'�	���	�����	

������
�	���	
���	

���
�	�����(

)�	�����	
��	

�

������
	
�
�*�	

�������	
�
������	
�����
�(

�

���

�

�

���

���

���

�

�����	���	
��
�����

)�	�����	
��	

�

������
	
�
�*�	

�������	
�
������	
�����
�(

'�	���	
�����	

������
�	
���	���	
���
�	
�����(

Figure 7. A model for trading off flexibility and
variability

7.1. Trade-off analysis: choosing an optimal
model for variability

First, let us consider product variability. As argued
in 6.1 it seems that for realizing variability (a
consequence of adhering to customer intimacy) the
project based product development model is ideal.
However, this ideal model is in many situations not
feasible due to the following reasons.

7.1.1. Lack of expert resources. If the human
resources required to engineer the product are highly
skilled IT professionals, the organization simply might
not have or cannot access to enough resources to apply
this model. Studies [8] [17] have shown that innovation
in software development is generated by a limited set
of individuals: the critical resources. Furthermore,
studies have shown that assigning engineers to more
than two projects at the same time is wasteful [38]. The
closer to the upper left corner in Figure 1, the more
linear the relationship becomes between the number of
developed products and the required expert resources
to engineer them. The following trade-off criterion is
therefore important: understanding to what extent one
is prepared to pay the price for more variability in
terms of assigning critical expert resources to
individual customer projects.

7.1.2. Difficulty to realize mass customization.
Development models in the upper left corner (Figure 1)
require larger amount of customer-specific
development activities (application engineering),
meaning that less customers can be served with the
same amount of resources. Companies are only able to
manage a certain amount of many individual “customer
threads” simultaneously. Understanding this threshold
is important. Companies might become a victim of
their own success (e.g. increased size of customer base)
if they remain in models in the upper left corner. The
following trade-off criterion is therefore important:
understanding to what extent one is prepared to pay the
price for more variability in terms of a smaller
customer base1.

7.1.3. High time-to-market pressure. The models
situated in the upper left corner (Figure 1) usually
require more time to develop products. In a situation
with a high pressure to deliver fast, these models might
not be optimal. The following trade-off criterion is

1 An important consideration in adoption of models in the upper left
corner is profitability. For some products and markets, customers are
not ready to pay the premium price for customer specific
developments that product builders need to be profitable.

VaMoS'09

68

therefore important: understanding to what extent one
is prepared to pay the price for more variability in
terms of less flexibility.

7.2. Trade-off analysis: choosing an optimal
model for flexibility

Next, let us consider flexible development. It seems
that for realizing flexibility, the out of the box product
development model is best suited (section 6.2).
However, this ideal model is in many situations not
feasible due to the following reasons.

7.2.1. Lack of market and domain knowledge.
Mastering successfully the models in the lower right
corner (Figure 1) requires very good understanding of
the domain (domain engineering) [11]. If this
knowledge is not available, applying this model is risky
because wrong assumptions can be made about
customer needs. Companies can only increase
flexibility by moving towards the lower right corner if
this transition is accompanied by an acquisition of the
relevant domain knowledge. The following trade-off
criterion is therefore important: understanding to what
extent one is prepared to pay the price for more
flexibility in terms of increasing the investment
involved in domain analysis.

7.2.2. Increased product complexity. Attempting to
increase flexibility in the development process by
adopting a product development model closer to the
lower right corner (Figure 1), can have a (negative)
side effect on the product. Increasing flexibility in this
strategy is all about preparing and anticipating more
flexibility in the future by introducing variation points.
These variation points (often invisible to customers)
are in the product architecture and add complexity to
the product. For products with thousands of variation
points (not an exceptional situation), the management
of dependencies and interactions between these
variation points might become difficult and may even
result in degraded product quality. The following trade-
off criterion is therefore important: understanding to
what extent one is prepared to pay the price for more
flexibility in terms of increasing product complexity.
(Note that increasing flexibility by adopting an agile
method does not suffer from the complexity problem.
Only the process is affected, not the product.)

7.2.3. Difficulty of realizing variability. Models in
the lower right corner (Figure 1) are typically
characterized by a large customer base. In some
situations defining a common product denominator for

all these customers is difficult. Customers might
require very different solutions (with even conflicting
functionalities). Deriving products often requires much
more than “simple” configuration. In this situation,
both sophisticated product management activities (e.g.
scoping [10]) and customization technologies are
required (e.g. configuration languages, automatic code
generation). The knowledge to master these
technologies might not be available. Therefore, an
important consideration is understanding to what extent
one is prepared to pay the price for more flexibility in
terms of less variability.

8. Conclusion

This paper addresses two fundamental decisions that
many product builders are faced with: how to realize
flexible development and how to realize product
variability. Because these challenges are often mixed,
companies sometimes fail to make the right decision.
For example, a company might decide to develop an
(internal) framework in order to speed up their
development. However, if the company is not able to
anticipate future wishes of its customers sufficiently
well (e.g. due to the nature of the markets they are
active in), the big investment in the framework might
never be returned. In this situation a completely
different strategy might be to introduce agile
development methods. It is exactly the balancing
between these two decisions with big impact that the
presented tradeoff model is about.

Next research steps will extend this tradeoff model
into a decision framework to guide companies in
selecting and transitioning between flexibility and
variability approaches.

9. Acknowledgments

The authors from Sirris would like to thank ISRIB
(Institute for the encouragement of Scientific Research
and Innovation of Brussels), IWT (Institute for the
Promotion of Innovation by Science and Technology in
Flanders) and the Brussels-Capital Region for the
support they provided for this research and publication.
They would also like to thank their colleagues for the
useful remarks provided on earlier versions of this
document.

10. References

[1] Johnson, R. E. 1997. Frameworks = (Components +
Patterns). Communications of the ACM 40(10):39-42.

VaMoS'09

69

[2] ACM. 2006b. Software Product Line. Communications
of the ACM 49(12).
[3] Agile Alliance. http://www.agilealliance.org/.
[4] Bachmann, F., and L. Bass. 2001. Managing Variability
in Software Architectures. SIGSOFT Software Engineering
Notes 26(3):126-132.
[5] Beck, K., and C. Andres. 2004. Extreme Programming
Explained: Embrace Change, 2nd Edition. Addison-Wesley.
[6] Beck, K., M. Beedle, A. van Bennekum, et al. 2001.
Manifesto for Agile Software Development.
http://www.agilemanifesto.org/.
[7] Bosch, J. 2002. Maturity and Evolution in Software
Product Lines: Approaches, Artefacts and Organization. In
Proceedings of the Second Software Product Line
Conference (SPLC2), Lecture Notes in Computer Science,
volume 2379, 257-271. Springer-Verlag.
[8] Brooks, F. P. 1995. The Mythical Man-Month: Essays
on Software Engineering, Anniversary Edition, 2nd Edition.
Addison-Wesley Professional.
[9] Christensen, C. M. 1997, The Innovator's Dilemma:
When New Technologies Cause Great Firms to Fail. Harvard
Business School Press.
[10] Clements, P., and L. Northrop. 2002. Software Product
Lines: Practices and Patterns. Addison-Wesley.
[11] Codenie, W., K. De Hondt, P. Steyaert, and A.
Vercammen. 1997. From Custom Applications to Domain-
Specific Frameworks. Communications of the ACM
40(10):70-77.
[12] Codenie, W., O. Biot, V. Blagojevi�, N. González-
Deleito, T. Tourwé, and J. Deleu. 2008. Cruising the
Bermuda Triangle of Software Development. Manuscript
submitted for publication.
[13] Cusumano, M. A. 2004. The Business of Software:
What Every Manager, Programmer, and Entrepreneur Must
Know to Thrive and Survive in Good Times and Bad. Free
Press.
[14] Czarnecki, K. 2005. Overview of Generative Software
Development. In Proceedings of Unconventional
Programming Paradigms (UPP), Lecture Notes in Computer
Science, volume 3566, 313-328. Springer-Verlag.
[15] Dehoff, K., and D. Neely. 2004. Innovation and
Product Development: Clearing the New Performance Bar.
Booz Allen Hamilton.
http://www.boozallen.com/media/file/138077.pdf.
[16] Gamma, E., R. Helm, R. Johnson, and J. M. Vlissides.
1994. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.
[17] Greenspun, P. 2002. Managing Software Engineers.
http://philip.greenspun.com/ancient-history/managing-
software-engineers.
[18] IEEE. 2004. Guide to the SWEBOK (Software
Engineering Body of Knowledge). http://www.swebok.org/.
[19] ITEA. 2004. ITEA Technology Roadmap for Software-
Intensive Systems, 2nd edition. http://www.itea-
office.org/itea_roadmap_2.
[20] ITEA. 2005. ITEA Blue Book: European leadership in
Software-intensive Systems and Services - The case for ITEA
2. http://www.itea2.org/itea_2_blue_book.

[21] Kang K., S. Cohen, J. Hess, W. Nowak, and S.
Peterson. 1990. Feature-oriented domain analysis (FODA)
feasibility study. Technical report CMU/SEI-90-TR-21, SEI
CMU.
[22] Kiczales, G., J. Irwin, J. Lamping, J.-M. Loingtier, C.
Videria Lopes, C. Maeda, and A. Mendhekar. 1996. Aspect-
Oriented Programming. ACM Computing Surveys
28(4es):154.
[23] Kratochvil, M. 2005. Growing Modular. Mass
Customization of Complex Products, Services and Software.
Springer.
[24] Leadbeater, C. 2008. We-think: Mass Innovation, not
Mass Production. Profile Books.
[25] Maiden, N., S. Robertson, and J. Robertson. 2006.
Creative requirements: invention and its role in requirements
engineering. In Proceeding of the 28th International
Conference on Software Engineering (ICSE'06), 1073-1074.
ACM.
[26] Mernik, M., J. Heering, and A. M. Sloane. 2005. When
and How to Develop Domain-Specific Languages. ACM
Computing Surveys 37(4):316-344.
[27] Nerur, S., R. Mahapatra, and G. Mangalaraj. 2005.
Challenges of Migrating to Agile Methodologies.
Communications of the ACM 48(5):72-78.
[28] Pohl, K., G. Böckle, and F. van der Linden. 2005.
Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer.
[29] Poppendieck, M., and T. Poppendieck. 2003. Lean
Software Development: An Agile Toolkit. Addison-Wesley.
[30] Rubner, J. 2005. Tuned in to Today's Megatrends. In
Siemens’ Pictures of the Future, 90-91.
http://www.siemens.com/Daten/siecom/HQ/CC/Internet/Rese
arch_Development/WORKAREA/fue_pof/templatedata/Engl
ish/file/binary/PoF104art15_1321356.pdf.
[31] Schwaber, K. 2004. Agile Project Management with
Scrum. Microsoft Press.
[32] Selic, B. 2003. The Pragmatics of Model-Driven
Development. IEEE Software 20(5):19-25.
[33] Smith, P. G. 2007. Flexible Product Development:
Building Agility for Changing Markets. Jossey-Bass.
[34] SEI SPL. Software Engineering Institute (SEI).
Software product lines framework.
http://www.sei.cmu.edu/productlines/framework.html.
[35] Treacy, M., and F. Wiersema. 1993. Customer Intimacy
and Other Value Disciplines. Harvard Business Review.
[36] Ulrich, K. T., and S. D. Eppinger. 2000. Product design
and development, 2nd Edition. McGraw-Hill.
http://www.ulrich-eppinger.net/.
[37] Webmashup.com. The open directory of mashups and
web 2.0 APIs, http://www.webmashup.com/.
[38] Wheelwright, S. C., and K. B. Clark. 1992.
Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency, and Quality. Free Press.

VaMoS'09

70

Deontic Logics for Modeling Behavioural Variability
Research in progress∗

P. Asirelli, M. H. ter Beek, S. Gnesi
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI–CNR

Via G. Moruzzi 1, I-56124 PISA (Italy)
{asirelli,terbeek,gnesi}@isti.cnr.it

A. Fantechi
DSI–Università di Firenze and ISTI–CNR, Pisa

Via S. Marta 3, I-50139 FIRENZE (Italy)
fantechi@dsi.unifi.it

Abstract

We discuss the application of deontic logics to the model-
ing of variabilities in product family descriptions. Deontic
logics make it possible to express concepts like permission
and obligation. As a first result of this line of research, we
show how a Modal Transition System, a model that has re-
cently been proposed as an expressive way to deal with be-
havioural variability in product families, can be completely
characterized with deontic logic formulae. We moreover
show some exemplary properties that can consequently be
proved for product families. These preliminary results pave
the way to a wider application of deontic logics to specifiy
and verify variability in product families.

1 Introduction

A description of a Product Family (PF) is usually com-
posed of a constant part and a variable part. The first part de-
scribes aspects that are common to all products of the fam-
ily, whereas the second part represents those aspects, called
variabilities, that will be used to differentiate one product
from another. The modeling of variability has been exten-
sively studied in the literature, especially that concerning
Feature modeling [2, 6, 17]. In variability modeling the in-
terest is in defining which features or components of a sys-
tem are optional, alternative, or mandatory; techniques and
tools are then developed to show that a product belongs to
a family, or to derive instead a product from a family, by
means of a proper selection of the features or components.

∗Funded by the Italian project D-ASAP (MIUR–PRIN 2007) and by
the RSTL project XXL of the Italian National Research Council (CNR).

In this paper we are interested in the modeling of be-
havioural variability, that is, how the products of a family
differ in their ability to respond to events in time: this is an
aspect that the referenced techniques do not typically focus
on. Many notations and description techniques have been
recently proposed for this purpose, such as variants of UML
state diagrams [3, 25] or variants of UML sequence dia-
grams, for example STAIRS [20]; another proposal can be
found in [24], where UML state diagrams and sequence di-
agrams have been enriched with aside notations to describe
variation points. At this regard, we rather prefer to look
for an expressive modeling formalism for families based on
the choice of a basic behavioural model, namely Labelled
Transition Systems (LTSs), which is one of the most popu-
lar formal frameworks for modeling and reasoning about the
behaviour of a system. Modal Transition Systems (MTSs)
have been proposed, in several variants, to model a family
of such LTSs [18, 13, 8]: in this way it is possible to embed
in a single model the behaviour of a family of products that
share the basic structure of states and transitions, transitions
which however can be seen as mandatory or possible for the
products of the family.

Deontic logics [1] have become very popular in com-
puter science in the last few decades to formalize descrip-
tional and behavioural aspects of systems. This is mainly
because they provide a natural way to formalize concepts
like violation, obligation, permission, and prohibition. In-
tuitively, they permit one to distinguish between correct
(normative) states and actions on the one hand and non-
compliant states and actions on the other hand. This makes
deontic logics a natural candidate for expressing the vari-
ability of a family of products. Recently, a Propositional
Deontic Logic (PDL) capable of expressing the permitted

VaMoS'09

71

behaviour of a system has been proposed [5]. We want to
study in detail the application of this kind of logics to the
modeling of behavioural variability. Indeed, PDL appears
to be a good candidate to express in a unique framework
both behavioural aspects, by means of standard branching-
time logic operators, and constraints over the product of
a family, which usually require a separate expression in a
first-order logic (as seen in [2, 9, 21]).

In this paper, we want to focus our attention on the ability
of a logic of finitely characterizing the complete behaviour
of a system, that is, given a MTS A, we look for a formula
of the logic that is satisfied by all and only those Labelled
Transition Systems that can be derived from A As a first
result in this direction, the main contribution of this paper
is that we are able to finitely characterize finite state MTSs,
using a deontic logic; to this aim, we associate a logical
formula (called characteristic formula [11, 12, 23]) to each
state of the MTS. Consequently, every LTS of the family de-
fined by the MTS satisfies the formula, and no LTS outside
the family satisfies it. In this way we establish a link be-
tween a common model of behavioural variability and PDL.
The deontic logic proposed in this paper is able to describe,
in a faithful way, the behaviour of systems modelled by fi-
nite state MTSs. Our work can serve as a basis to develop
a full logical framework to express behavioural variability
and to build verification tools employing efficient model-
checking algorithms.

2 Labelled Transition Systems

As said before, a basic element of our research is the
concept of a Labelled Transition System, of which we de-
fine several variants.

Definition 2.1 (Labelled Transition System) A Labelled
Transition System (LTS) is a quadruple (Q, q0, Act,→), in
which

• Q is a set of states;

• q0 ∈ Q is the initial state;

• Act is a finite set of observable events (actions);

• →⊆ Q×Act×Q is the transition relation; instead of
(q, α, q′) ∈→ we will often write q

α→ q′.

Definition 2.2 (Modal Transition System) A Modal Tran-
sition System (MTS) is a quintuple (S, s0, Act,→�,→�)
such that (S, s0, Act,→� ∪ →�) is a LTS. A MTS has
two distinct transition relations: the must transition rela-
tion →� expresses required transitions, while the may tran-
sition relation →� expresses possible transitions.

A MTS defines a family of LTSs, in the sense that each
LTS P = (SP , p0, Act,→) of the family can be obtained
from the MTS F = (SF , f0, Act,→�,→�) by considering
its transition relation → to be →� ∪ R, with R ⊂→�,
and pruning the states that are not reachable from its initial
state p0. The “P is a product of F ” relation below, also
called “conformance” relation, links a MTS F representing
a family with a LTS P representing a product.

Definition 2.3 (Conformance relation) We say that P is a
product of F , denoted by P � F , if and only if p0 � s0,
where p � f if and only if

• f
a−→� f ′ =⇒ ∃p′ ∈ SP : p

a−→ p′ and p′ � f ′

• p
a−→ p′ =⇒ ∃f ′ ∈ SF : f

a−→� f ′ and p′ � f ′

Another extension of LTSs is obtained by labelling its
states with atomic propositions, leading to the concept of
doubly-labelled transition systems [7].

Definition 2.4 (Doubly-Labelled Transition System) A
Doubly-Labelled Transition System (L2TS) is a quintuple
(Q, q0, Act,→, AP, L), in which

• (Q, q0, Act,→) is a LTS;

• AP is a set of atomic propositions;

• L : Q −→ 2AP is a labelling function that associates a
subset of AP to each state of the LTS.

3 A deontic logic

Deontic logics are an active field of research in formal
logic for many years now. Many different deontic logic
systems have been developed and in particular the use of
modal systems has had a lot of success in the deontic com-
munity [1]. The way such logics formalize concepts such
as violation, obligation, permission and prohibition is very
useful for system specification, where these concepts arise
naturally. In particular, deontic logics seem to be very use-
ful to formalize product families specifications, since they
allow one to capture the notion of possible and compulsory
features.

Our starting point is the Propositional Deontic Logic
(PDL) defined in [5]. PDL is able to express both the evolu-
tion in time of a system by means of an action, and the fact
that certain actions are permitted or not in a given state. The
original definition considers actions from a set Act, each ac-
tion producing a set of events from a set E. The set of events
produced by an action α ∈ Act is named I(α). The logic
we propose in this paper is a temporal extension of PDL,

VaMoS'09

72

in a style reminiscent of the extension proposed in [5]. The
syntax of the logic is:

φ ::= tt | p | ¬φ | φ ∧ φ′ | Aπ | Eπ | [α]φ | P (α) | Pw(α)
π ::= φ U φ′

As usual, ff abbreviates ¬tt, φ∨φ′ abbreviates ¬(¬φ∧¬φ′),
and φ =⇒ φ′ abbreviates ¬φ∨φ′. Moreover, EFφ abbre-
viates E (tt U φ) and AGφ abbreviates ¬EF¬φ. Finally,
the informal meaning of the three non-conventional modal-
ities, explained below in more detail, is:

• [α]φ: after any possible execution of α, φ holds;

• P (α): every way of executing α is allowed;

• Pw(α): some way of executing α is allowed.

The first of these three modalities thus provides the pos-
sibility to express evolution, while the other two provide
the possibility to express (weak) permission. Furthermore,
〈α〉φ abbreviates ¬[α]¬φ.

The two variants of permission are rather common in the
literature on deontic logic. The operator P (α) tells whether
or not an action α is allowed to be performed. It can be
called a strong permission since it requires that every way of
performing α has to be allowed (e.g. if we were to say that
driving is allowed, it would mean that also driving while
drinking beer is allowed). Not surprisingly, permission has
been a polemical notion since the very beginning of deontic
logic. Some have proposed a weak version [22] in which
to be allowed to perform an action means that this action is
allowed only in some contexts. We stick to [5] and use both
notions of permission. The latter is denoted by the operator
Pw(α), which must be read as α is weakly allowed. The
two versions differ in their properties (see [5] for details).

In [5] both variants of permission are used to define
obligation O(α) as P (α) ∧ ¬Pw(¬α), i.e. α is obligated
if and only if it is strongly permitted and no other action
is weakly allowed. This definition avoids Ross’s paradox
O(α) =⇒ O(α ∨ α′), which can be read as “if you are
obliged to send a letter, then you are obliged to send it or
burn it”.

The formal semantics of our logic is given below by
means of an interpretation over L2TS, mimicking the orig-
inal semantics of PDL in [5]. To this aim, the L2TS
used as an interpretation structure is defined as a sixtu-
ple (W, w0, E,→, AP ∪ E,L), in which the transitions
are labelled over the set of events E and the states (cor-
responding to the worlds of the standard interpretation) are
labelled with atomic propositions as well as with the events
allowed in the states. To this purpose, we also use a relation
P ⊆ W ×E to denote which events are permitted in which
world, with the understanding that P (w, e) if and only if
e ∈ L(w).

Definition 3.1 (Semantics) The satisfaction relation of our
deontic logic is defined as follows:

• w |= tt always holds;

• w |= p iff p ∈ L(w);

• w |= ¬φ iff not w |= φ;

• w |= φ ∧ φ′ iff w |= φ and w |= φ′;

• w |= Aπ iff σ |= π for all paths σ that start with state
w;

• w |= Eπ iff there exists a path σ that starts with state
w such that σ |= π;

• w |= [α]φ iff ∀e ∈ I(α) : w
e−→ w′ implies w′ |= φ;

• w |= P (α) iff ∀e ∈ I(α) : P (w, e) holds;

• w |= Pw(α) iff ∃e ∈ I(α) : P (w, e) holds;

• σ |= [φ U φ′] iff there exists a state sj , for some j ≥ 0,
on the path σ such that for all states sk, with j ≤ k,
sk |= φ′ while for all states si, with 0 ≤ i < j, si |= φ.

4 A deontic characteristic formula for MTSs

In this section, we show how a unique deontic logic for-
mula can completely characterize a family of LTSs by sep-
arating the structure of the LTS (taken care of by the box
fomulae) from the optional/mandatory nature of the tran-
sitions (taken care of by the permission formulae). Since
a MTS is a compact expression of a family of LTSs, this
is equivalent to saying that we are able to characterize a
MTS with a deontic logic formula. The result we show here
is rather preliminary, in the sense that it currently needs
the following simplifying assumptions, but it nevertheless
shows the potentiality of our deontic logic.

• First, we adopt a strict interpretation to the permitted
events that label the transitions of a L2TS, namely we
assume that w

e→ implies P (w, e), that is, only permit-
ted actions are executed.

• We then assume, for any action α, that I(α) = {eα},
that is, actions and events are indistinguishable.

• We also assume that a MTS defines the family of those
LTSs that are derived from a corresponding family of
L2TSs, simply ignoring the predicates on the states.

• Last, we use a simpler form of MTSs, in which tran-
sitions leaving the same state are either all box tran-
sitions or all diamond transitions. As we show next,
this assumption allows us to distinguish box states and
diamond states, and have a single transition relation.

VaMoS'09

73

Definition 4.1 (Alternative def. MTS) A MTS is a quintu-
ple (BS, DS, s0, Act,→) such that (BS ∪ DS, s0, Act,→)
is a LTS and BS ∩ DS = ∅. A MTS has two distinct sets
of states: the box states BS and the diamond states DS.

At this point, we define the characteristic formula
FC(M) of a (simple) MTS M = (BS, DS, s0, Act,→) as
FC(s0), where

FC(s) =

⎧⎨
⎩

(
∨

i Pw(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ DS
(
∧

i O(αi)) ∧ ((
∧

i[αi]FC(si)) if s ∈ BS

and ∀i : s
ei→ si with I(αi) = {ei}

If we define the characteristic formula in an equational form
using the expressions above, we obtain one equation for
each state of the MTS, and the equations have a number of
terms equal to two times the number of transitions leaving
the relevant state. An attempt to write a single characteristic
formula gives a formula exponential in size with respect to
the number of states, and needs some form of fixed point
expression for expressing cycles in the MTS (see [12]).

Figure 1. A MTS modeling a product family.

5 An example

Let us consider the example introduced in [8], that is, a
family of coffee machines represented by the MTS depicted
in Fig. 1, which allows products to differ for the two differ-
ent currencies accepted, for the three drinks delivered and
for the presence of a ring tone after delivery. In the figure,

solid arcs are required transitions and dashed arcs are possi-
ble transitions, that is, states with outgoing solid arcs belong
to BS, and states with outgoing dashed arcs belong to DS.

The characteristic formula in equational form is given by
the following set of equations:

φ0 = (Pw(1e) ∨ Pw(1$)) ∧ ([1e]φ1 ∧ [1$]φ1)
φ1 = (O(sugar) ∧ O(no_sugar))

∧ ([sugar]φ2 ∧ [no_sugar]φ3)
φ2 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ4 ∧ [cappuccino]φ5 ∧ [tea]φ6)
φ3 = (Pw(coffee) ∨ Pw(cappuccino) ∨ Pw(tea))

∧ ([coffee]φ7 ∧ [cappuccino]φ8 ∧ [tea]φ9)
φ4 = O(pour_sugar) ∧ [pour_sugar]φ7

φ5 = O(pour_sugar) ∧ [pour_sugar]φ8

φ6 = O(pour_sugar) ∧ [pour_sugar]φ9

φ7 = O(pour_coffee) ∧ [pour_coffee]φ10

φ8 = O(pour_tea) ∧ [pour_tea]φ11

φ9 = O(pour_coffee) ∧ [pour_coffee]φ11

φ10 = O(pour_milk) ∧ [pour_milk]φ11

φ11 = O(display_done) ∧ [display_done]φ12

φ12 = (Pw(cup_taken) ∨ Pw(ring_a_tone))
∧ ([cup_taken]φ0 ∧ [ring_a_tone]φ13)

φ13 = O(cup_taken) ∧ [cup_taken]φ0

Note that the characteristic formula given above does not
allow, from any state of the considered MTS, to derive a
LTS such that the corresponding state has no outgoing tran-
sitions, even in the case of diamond states.

The characteristic formula of a MTS implies any other
property which is satisfied by the MTS, and can thus serve
as a basis for the logical verification over MTSs. Actually,
this approach is not as efficient as model-checking ones, but
the definition of the characteristic formula may serve as a
basis for a deeper study of the application of deontic logics
to the verification of properties of families of products.

We now show two exemplary formulae that use deontic
operators to formalize properties of the products derived by
the family of coffee machines represented by the MTS de-
picted in Fig. 1.

1. The family permits to derive a product in which it is
permitted to get a coffee with 1e:

Pw(1e) =⇒ [1e] E (tt U Pw(coffee))

2. The family obliges every product to provide the possi-
bility to ask for sugar:

A (tt U O(sugar))

VaMoS'09

74

Notice that the deontic operators predicate on the relations
between the products and the family, although they are de-
fined on particular states of their behaviour.

It can be seen that the formulae above can be derived,
using the axiom system given in [5], from the characteristic
formula of the MTS of Fig. 1. This proves that the above
properties are actually verified for the coffee machines that
belong to the family described by the MTS.

6 Conclusions

We have shown how deontic logics can express the vari-
ability of a family, in particular by showing the capability of
a deontic logic formula to finitely characterize a finite state
Modal Transition System, a formalism proposed to capture
the behavioural variability of a family. The logical frame-
work has allowed us to prove simple behavioural properties
of the example MTS shown.

These results, although very preliminary, lay the basis of
further research in this direction, in which we aim at ex-
ploiting the full power of PDL for what concerns the ex-
pression of behavioural variability: the presence of CTL-
like temporal operators allows more complex behavioural
properties to be defined and therefore more expressive de-
scriptions of behavioural variability to be supported. In par-
ticular, the dependency between variation points could be
addressed in a uniform setting. Another interesting direc-
tion is the adoption of model-checking techniques to build
efficient verification tools aimed at verifying, on the family
definition, properties which are inherited by all the products
of the family.

It would also be interesting to have a look at the variabil-
ity of dynamic models in the large, taking into account both
the problem of modelling variability in business process
models and that of using goal modelling—which intrinsi-
cally includes variability—to model variable processes.

Finally, it remains to study to what degree the complex-
ity of the proposed logic and verification framework can be
hidden from the end user, or be made more user friendly, in
order to support developers in practice.

References

[1] L. Åqvist, Deontic Logic. In D. Gabbay and F. Guen-
thner (Eds.): Handbook of Philosophical Logic (2nd
Edition), Volume 8. Kluwer Academic, Dordrecht,
2002, 147-264.

[2] D.S. Batory, Feature Models, Grammars, and Propo-
sitional Formulas. In J.H. Obbink and K. Pohl
(Eds.): Proceedings Software Product Lines Confer-
ence (SPLC’05), LNCS 3714, 2005, 7–20.

[3] J. Bayer, S. Gerard, O. Haugen, J. Mansell, B. Møller-
Pedersen, J. Oldevik, P. Tessier, J.-P. Thibault and T.
Widen, Consolidated Product Line Variability Model-
ing. Chapter 6 of [16], 2006, 195–241.

[4] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti,
An action/state-based model-checking approach for
the analysis of communication protocols for Service-
Oriented Applications. In S. Leue and P. Merino
(Eds.): Proceedings Formal Methods for Industrial
Critical Systems (FMICS’07), LNCS 4916, Springer,
2008, 133–148.

[5] P.F. Castro and T.S.E. Maibaum, A Complete and
Compact Propositional Deontic Logic. In C.B. Jones,
Zh. Liu and J. Woodcock (Eds.): International Collo-
quium Theoretical Aspects of Computing (ICTAC’07),
LNCS 4711, Springer, 2007, 109–123.

[6] K. Czarnecki and U.W. Eisenecker. Generative
Programming: Methods, Tools, and Applications,
Addison-Wesley, Boston, MA, 2000.

[7] R. De Nicola and F.W. Vaandrager, Three Logics for
Branching Bisimulation. Journal of the ACM 42, 2
(1995), 458–487.

[8] A. Fantechi and S. Gnesi, Formal Modeling for Prod-
uct Families Engineering. In Proceedings Software
Product Lines Conference (SPLC’08), IEEE, 2008,
193–202.

[9] A. Fantechi, S. Gnesi, G. Lami and E. Nesti,
A Methodology for the Derivation and Verifica-
tion of Use Cases for Product Lines. In R.L. Nord
(Ed.): Proceedings Software Product Lines Confer-
ence (SPLC’04), LNCS 3154, Springer, 2004, 255–
265.

[10] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R.
Pugliese and F. Tiezzi, A model checking approach
for verifying COWS specifications. In J.L. Fiadeiro
and P. Inverardi (Eds.): Proceedings Fundamental Ap-
proaches to Software Engineering (FASE’08), LNCS
4961, Springer, 2008, 230–245.

[11] A. Fantechi, S. Gnesi and G. Ristori, Compositional-
ity and Bisimulation: A Negative Result. Information
Processing Letters 39, 2 (1991), 109–114.

[12] A. Fantechi, S. Gnesi and G. Ristori, Modeling Transi-
tion Systems within an Action Based Logic. Technical
Report B4-49-12, IEI–CNR, Dec. 1995.

[13] D. Fischbein, S. Uchitel and V.A. Braberman, A
Foundation for Behavioural Conformance in Software
Product Line Architectures. In R.M. Hierons and H.

VaMoS'09

75

Muccini (Eds.): Proceedings Role of Software Ar-
chitecture for Testing and Analysis (ROSATEA’06),
ACM, 2006, 39–48.

[14] A. Gruler, M. Leucker and K.D. Scheidemann, Mod-
eling and Model Checking Software Product Lines.
In G. Barthe and F.S. de Boer (Eds.): Proceedings
Formal Methods for Open Object-Based Distributed
Systems (FMOODS’08), LNCS 5051, Springer, 2008,
113–131.

[15] G. Halmans and K. Pohl, Communicating the Variabil-
ity of a Software-Product Family to Customers, Soft-
ware and Systems Modeling 2, 1 (2003), 15–36.

[16] T. Käkölä and J.C. Dueñas (Eds.): Software Product
Lines—Research Issues in Engineering and Manage-
ment, Springer, Berlin, 2006.

[17] K. Kang, S. Choen, J. Hess, W. Novak and S. Peterson,
Feature Oriented Domain Analysis (FODA) Feasibil-
ity Study. Technical Report SEI-90-TR-21, Carnegie
Mellon University, Nov. 1990.

[18] K.G. Larsen, U. Nyman and A. Wąsowski, Modal
I/O Automata for Interface and Product Line Theo-
ries. In R. De Nicola (Ed.): Proceedings European
Symposium on Programming Languages and Systems
(ESOP’07), LNCS 4421, Springer, 2007, 64–79.

[19] K.G. Larsen, U. Nyman and A. Wąsowski, Model-
ing software product lines using color-blind transition
systems. International Journal on Software Tools for
Technology Transfer 9, 5–6 (2007), 471–487.

[20] M.S. Lund and K. Stølen, A Fully General Operational
Semantics for UML 2.0 Sequence Diagrams with Po-
tential and Mandatory Choice. In J. Misra, T. Nipkow
and E. Sekerinski (Eds.): Proceedings Formal Meth-
ods (FM’06), LNCS 4085, Springer, 2006, 380–395.

[21] M. Mannion and J. Camara, Theorem Proving for
Product Line Model Verification. In F. van der Linden
(Ed.): Proceedings Software Product-Family Engi-
neering (PFE’03), LNCS 3014, Springer, 2004, 211–
224.

[22] J.-J.Ch. Meyer, A Different Approach to Deontic
Logic: Deontic Logic Viewed as a Variant of Dynamic
Logic. Notre Dame Journal of Formal Logic 29, 1
(1988), 109–136.

[23] B. Steffen, Characteristic Formulae. In G. Ausiello,
M. Dezani-Ciancaglini and S. Ronchi Della Rocca
(Eds.): Proceedings International Colloquium Au-
tomata, Languages and Programming (ICALP’89),
LNCS 372, Springer, 1989, 723–732.

[24] K. Pohl, G. Böckle and F. van der Linden, Software
Product Line Engineering—Foundations, Principles,
and Techniques, Springer, Berlin, 2005.

[25] T. Ziadi and J.-M. Jézéquel, Product Line Engineering
with the UML: Deriving Products. Chapter 15 of [16],
2006, 557–586.

VaMoS'09

76

Structuring the Product Line Modeling Space: Strategies and Examples

Paul Grünbacher Rick Rabiser Deepak Dhungana
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler Universität Linz, Austria
gruenbacher@ase.jku.at

Martin Lehofer
Siemens VAI, Turmstrasse 44

Linz, Austria
martin.lehofer.ext@siemens.com

Abstract

The scale and complexity of real-world product
lines makes it practically infeasible to develop a single
model of the entire system, regardless of the languages
or notations used. Product line engineers need to apply
different strategies for structuring the modeling space to
facilitate the creation and maintenance of the models.
The combined use of these strategies needs to support
modeling variability at different levels of abstraction. In
this paper, we discuss some of these strategies and pro-
vide examples of applying them to a real-world product
line. We also describe tool support for structuring the
modeling space and outline open research issues.

1. Introduction and Motivation

Many software product lines today are developed
and maintained using a model-based approach. Nu-
merous approaches are available for defining product
lines such as feature-oriented modeling languages [19,
5, 1], decision-based approaches [7, 26], orthogonal ap-
proaches [3], architecture modeling languages [21, 6],
or UML-based techniques [2, 11]. Numerous tools have
been developed to automate domain and application en-
gineering activities based on these models.

No matter which modeling approach is followed,
developing a single model of a product line is practi-
cally infeasible due to the size and complexity of to-
day’s systems. The high number of features and compo-
nents in real-world systems means that modelers need
strategies and mechanisms to organize the modeling
space. Divide and conquer is a useful principle but the

question remains which concrete strategies can be ap-
plied to divide and structure the modeling space.

The aspect of organizing modeling spaces in prod-
uct line engineering has already been addressed by
some researchers: For instance, Hunt [16] discusses the
challenge of organizing an asset base for product deriva-
tion. Jorgenson [18] presents an approach to model a
product line at different levels of abstraction. In our own
research we have proposed an approach that addresses
the more technical aspect of creating and merging mul-
tiple model fragments [8]. While these approaches give
some initial answers, structuring the modeling space re-
mains challenging. Due to the absence of guidelines
product line engineers still struggle with this task. It is
difficult if not impossible to define general recommen-
dations regarding the optimal approach for a certain de-
velopment context. For instance, modelers can structure
models by using problem space structures (e.g., differ-
ent markets) or solution space structures (e.g., different
subsystems). Alternatively, they can use a combination
of approaches. The problem of structuring the model-
ing space also exists when engineering single software
systems. However, we have applied and tested our ap-
proach in the context of product line variability model-
ing, where it is necessary to understand and define the
variability of the system at different levels of abstrac-
tion. Modelers lack guidelines on how to treat variabil-
ity aspects in a large modeling spaces. E.g., variability
might be defined as part of existing models or in sepa-
rate models.

This paper is not about notations and modeling lan-
guages for product lines. Instead, we explore the issue
of how to structure models for large product lines re-
gardless of the modeling language used. We discuss

VaMoS'09

77

several strategies for structuring product line models
from different perspectives (e.g., solution space, orga-
nization, business needs, . . .). We present our own ex-
periences of using a multi-level structuring approach.
We briefly discuss necessary tool capabilities and point
out open issues to be addressed in future research.

2. Structuring the Modeling Space

There are many ways for modeling and managing
variability but the basic challenges remain: Product line
engineers need to define the variability of the problem
space, i.e., stakeholder needs and desired features; the
variability of the solution space, i.e., the architecture
and the components of the technical solution; and the
dependencies between these two.

Regardless of the concrete modeling approach used
there are several options to structure and organize the
modeling space:

Mirroring the Solution Space Structure. Whenever
product lines are modeled for already existing software
systems, the structure of the available reusable assets
can provide a basis for organizing the modeling space.
Models can be created that reflect the structure of the
technical solution. This can be done by creating sep-
arate variability models for different subsystems of a
product line. For example, the package structure of a
software system or an existing architecture description
can serve as a starting point. The number of different
models should be kept small to avoid negative effects
on maintainability and consistency. This strategy can
be suitable for instance if the responsibilities of devel-
opers and architects for certain subsystems are clearly
established.

Decomposing into Multiple Product Lines. On a
larger scale complex products are often organized using
a multi-product line structure [25]. For example, com-
plex software-intensive system such as cars or industrial
plants with system of systems architectures may contain
several smaller product lines as part of the larger sys-
tem. Models have to be defined for each of these prod-
uct lines and kept consistent during domain and applica-
tion engineering. This strategy often means that differ-
ent teams create variability models for the product line
they are responsible for.

Structuring by Asset Type. Another way of deal-
ing with the scale of product line models is to struc-
ture the modeling space based on the asset types in the
domain. Separate models can then be created for dif-
ferent types of product line assets. Examples are re-
quirements variability models based on use cases [13],
architecture variability models [6], or documentation
variability models for technical and user-specific doc-

uments [17]. This approach is in line with orthogonal
approaches [23] that suggest using few variability mod-
els that are related with possibly many asset models.
Structuring by asset type allows managing variability in
a coherent manner. It is however important to consider
the dependencies between the different types of artifacts
which can cause additional complexity.

Following the Organizational Structure. This strat-
egy suggests to follow the structure of the organiza-
tion when creating product line models. Different
stakeholders are interested in different concerns of a
product line [10]. In many organizations architec-
tural knowledge is distributed across different stake-
holders independent of their roles and responsibilities
in the development process. Conway’s Law [4] states
that “. . . organizations which design systems . . . are con-
strained to produce designs which are copies of the
communication structures of these organizations”. In
a multi-team environment, individual teams collaborate
closely on certain aspects of a product line. It can thus
be a good strategy to structure the product line mod-
eling space based on the team structure to reflect the
modeling concerns of the involved stakeholder groups.
However, creating product line models driven by stake-
holders can easily increase the redundancy in models.
While such an approach is already useful in single sys-
tem engineering it might bring additional benefits when
migrating towards a product line approach: The knowl-
edge about variability is typically not explicitly avail-
able in such a situation. Understanding and defining the
variability at the level of a small team might be easier
to accomplish than following a top-down approach.

Considering Cross-cutting Concerns. Using con-
cepts from aspect-oriented development to structure
product line models is helpful when many crosscutting
features need to be described. Aspect-oriented prod-
uct line modeling can be used to model both problem
and solution space variability. For instance, Völter and
Groher [27] describe an approach that involves creating
a model of the core features all products have in com-
mon and defining aspect variability models for product-
specific features shared by only some products. Com-
plex aspect dependencies can however lead to difficul-
ties of managing their interaction.

Focusing on Market Needs. Structuring the mod-
eling space can also be driven by business and man-
agement considerations, e.g., from product manage-
ment [15] or marketing [20]. Focusing variability mod-
eling on business considerations eases the communica-
tion with customers. If combined with other strategies
this approach can support the communication between
customers and sales people. If following this strategy
in pure form, models might be unrelated with the tech-

VaMoS'09

78

nical solution thus leading to problems when trying to
understand the actual realization of the variability.

3. Applying the Strategies: Two Examples

In typical product lines it does not make sense to
use the described strategies in their pure form. Instead
in practical settings the different approaches have to
be combined: For example, a system of systems can
be modeled for different customer types while at the
same time also structuring the resulting models by as-
set types. An example is the domain of mobile phones,
where models can be created for different product lines
for senior citizens, teenagers, business people. In each
of these product lines one can define models for the
various assets (requirements, architecture, and docu-
mentation). Another example is to first create mod-
els driven by product and marketing considerations and
later restructure these models to follow the solution
space structure. The importance of hybrid approaches
is also reflected in recent research. For instance, sev-
eral papers appeared about linking problem space and
solution space models [7, 14, 22].

Over the last three years we have been collaborat-
ing with Siemens VAI, the world’s leading engineer-
ing and plant building company for the iron, steel, and
aluminum industries. In the context of the research
project we have developed the decision-oriented prod-
uct line engineering approach DOPLER [7] and sup-
porting tools [9]. A main aim of the research project has
been to validate our tool-supported approach by creat-
ing product line models for our industry partner’s pro-
cess automation system for continuous casting in steel
plants (CL2). Our initial approach of putting all model
elements into one model failed due to the scale and
complexity of the product line. We therefore experi-
mented with different strategies as described in the pre-
vious section. We did not explicitly choose a single
strategy but started to combine them.

3.1. Initial Approach: Solution Space Struc-
ture and Business Concerns

Our initial strategy was to use the existing techni-
cal solution structure as the starting point for structur-
ing our models. Due to the size of the CL2 product
line, creating one model representing the whole techni-
cal solution was infeasible due to the distributed knowl-
edge about variability and the overall complexity of the
system. Also, such a strategy only inadequately sup-
ported evolution in the multi-team development envi-
ronment of Siemens VAI [8]. In the company’s devel-
opment process different teams are in charge for various

Figure 1. The initial strategy considers the
solution space structure and business con-
cerns. Variability identified in workshops and
with automated tools is captured in differ-
ent model fragments reflecting different sub-
systems. Model fragments contain technical
decisions (TD), business decisions (BD), and
reusable assets (A).

subsystems of the product line (e.g., cooling, cutting,
material tracking, etc.). People in charge of a particu-
lar subsystem have intimate knowledge about this part
of the product line, however, no single developer has
the knowledge required to model the entire system. We
therefore came up with a multi-team approach based on
the idea of variability model fragments [8].

The variability of the system was elicited in two
ways (see Figure 1): (i) We conducted moderated work-
shops with engineers and project managers represent-
ing various subsystems to identify major differences
of products delivered to customers and to formally de-
scribe these differences in models [24]. Business de-
cisions (BD) represent external variability. Technical
decisions (TD) define internal variability not visible to
customers. (ii) We used automated tools to analyze
the technical variability at the level of components by
parsing existing configuration files. Developers had to
manually confirm the variation points detected by our
tools. We created variability model fragments for 11
subsystems of CL2. The developed variability model
fragments vary in size and complexity due to the dif-
ferent scope of the subsystems. The average model
fragment contains 50 assets (mainly components and
parameters), 12 decisions and 23 references to other
model fragments [8].

The approach has several advantages: It supports

VaMoS'09

79

the clear separation of concerns through variability
model fragments for different subsystems. This eases
model development and evolution in multi-team mod-
eling environments. Different stakeholder perspectives
are considered by modeling both business and techni-
cal variability of the system. However, we noticed two
weaknesses which made it necessary to further refine
the approach and to revisit the structure of the modeling
space: Mixing technical and business decisions in one
model fragment can cause problems as different people
are responsible for maintaining these decisions. Mixing
assets and decisions in one model fragment has nega-
tive effects on model maintenance. While assets change
often, decisions turned out to be more stable. We thus
decided to refine our initial approach.

Figure 2. The improved layered approach.
Fragments are defined for assets and deci-
sions at each architectural layer. This struc-
ture also allows to separately handle business
decisions (BD) and technical decisions (TD).

3.2. Refined Approach: Layered Modeling of
Problem and Solution Space

We created separate model fragments for assets and
decisions. Decisions models were further divided into
business decision models and technical decision mod-
els. This allowed us to more clearly separate exter-

nal variability (captured as business decisions) from in-
ternal variability (captured as technical decisions). In
the initial approach we considered all subsystems at the
same level. However, a recent refactoring of the CL2
architecture led to a clearer separation of architectural
layers. We thus followed this new architectural style
and created asset models and decision models in a lay-
ered fashion (see Figure 2).

We are currently refactoring the existing variability
models for Siemens VAI’s CL2 system following this
new structure. We defined additional business decisions
based on existing documents (i.e., contracts and spec-
ifications). We created initial variability model frag-
ments for two architectural layers, one layer represent-
ing the platform for CL2 (comprising common func-
tionality that could also be used by other systems than
CL2) and one representing the CL2 system itself.

Compared to the initial approach the new structure
allows to separately manage decisions and assets at dif-
ferent layers of the architecture. Changes of the under-
lying components can be semi-automatically reflected
in the asset model fragments which helps to reduce the
maintenance effort. The new approach also is more
explicit regarding the definition of stakeholder roles.
Models fragments can be assigned to designated indi-
viduals or groups to ensure their maintenance. We used
existing documents such as technical specifications and
contracts to identify business decisions. This helped to
better understand the external variability of the system
and to narrow the gap to non-technical stakeholders. By
modeling these decisions in separate model fragments,
we can achieve a clear separation of concerns based on
external and internal variability.

4. Tool Support

When different people model a system from their
individual perspectives they create models represent-
ing parts of the whole system. These model fragments
are also related with each other similar to the parts of
the system they represent. It is noteworthy to mention
that decomposition implies recomposition [12], which
means working with small models requires techniques
to actually create a large model from the small ones.
Model fragments are incomplete as they represent only
a partial view of the system. The links to other parts
of the system need to be resolved before a single model
can be generated for product derivation.

4.1. Required Tool Capabilities

Product line modeling tools should provide capa-
bilities for creating model fragments, defining inter-

VaMoS'09

80

fragment relationships, and integrating the model frag-
ments. From a high-level point of view, there are two
possible mechanisms for specifying model fragments
and their dependencies [8].

Lazy dependencies. Modelers define placeholder
elements at modeling time and assume that the refer-
ences can be mapped to real elements before the mod-
els are used in product derivation. Fragments have to be
explicitly merged to replace placeholders with the cor-
rect model elements. Despite the more complex merg-
ing process this approach allows to create and evolve
model fragments without explicit coordination and in-
creases the flexibility for modelers in multi-team envi-
ronments.

Precise dependencies. Related model elements
from other model fragments are referred to explicitly by
model fragment owners when specifying dependencies
between different model fragments. This requires to
know the model elements of other fragments at model-
ing time. This can be compared to the explicit import
statements in programming languages.

Whenever several model fragments are created at
modeling time, they need to be merged before being
used in product derivation. In case of placeholder refer-
ences (lazy approach) dependencies between fragments
are resolved manually or with the help of a tool dur-
ing merging. In case of explicit references (precise ap-
proach) the merging process is easier as ambiguities
have already been avoided by the modelers when cre-
ating model fragments.

4.2. Support in the DOPLER Tool Suite

As part of our ongoing tool development we have
been developing an approach based on model fragments
that allows defining multiple interrelated models [8].
More specifically, our DOPLER tool suite provides sev-
eral capabilities to structure the modeling space. The
referencing mechanism used in our tools is the lazy ap-
proach.

A model fragment in DOPLER consists of model
elements and placeholder elements. Placeholder ele-
ments are introduced in a model fragment whenever
relationships to elements from other model fragments
need to be defined. We use concepts from programming
languages to define the visibility of model elements.
Modelers can specify public elements of fragments to
make them visible outside the fragment. If model ele-
ments are internal to a subsystem with no direct rela-
tionships to elements in other models they are defined
as private elements. The explicit location or the exact
names of the referenced elements are not needed dur-
ing modeling to allow loose connections between frag-

ments. More details on this feature are described in [8].

5. Summary and Open Issues

This paper described strategies and examples of
structuring the modeling space in product line engineer-
ing. There is no single optimal strategy to organize
the modeling space. Our examples show that realistic
strategies will be hybrid and take into account several
aspects. While the strategies discussed in Section 2 pro-
vide high-level guidance it is still difficult to transfer
experiences between companies and domains.

We believe that model fragments have two benefits
from the perspective of variability modeling: (a) They
allow to define variability locally and in a bottom-up
manner (e.g., by starting at the level of teams or indi-
vidual subsystems). This was the case in strategy 1.
(b) They allow to define variability at different levels
of abstraction and to separate those levels more clearly.
This was relevant in strategy 2.

We intend to address the following research ques-
tions in our future research:

• How can we find a balance between flexibility
and maintainability when structuring the modeling
space? Creating many separate model fragments
negatively affects maintainability while flexibility
is reduced if the number of model fragments is too
small. We intend to develop general guidelines de-
pending on systems’ size, structure, and complex-
ity.

• How can we develop a mix of structuring strate-
gies for a given context? For instance, migrating
a legacy system to a product line needs a different
strategy than building a product line from scratch.

• Is precise or lazy model dependency management
to prefer? While developers of our industry partner
preferred leeway to create and evolve model frag-
ments this might not be the case in other organiza-
tions or domains. We plan to conduct experiments
to compare the usefulness and utility of these two
approaches.

References

[1] T. Asikainen, T. Männistö, and T. Soininen. A unified
conceptual foundation for feature modelling. In 10th
Int’l Software Product Line Conference (SPLC 2006),
pages 31–40, Baltimore, MD, USA, 2006. IEEE CS.

[2] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Lait-
enberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-Based Product Line Engineering
with UML. Addison-Wesley, 2002.

VaMoS'09

81

[3] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. A meta-model for repre-
senting variability in product family development. In
F. van der Linden, editor, 5th Int’l Workshop on Soft-
ware Product-Family Engineering, volume LNCS 3014,
pages 66–80, Siena, Italy, 2003. Springer.

[4] M. Conway. How do committees invent? Datamation,
14(4):28–31, 1968.

[5] K. Czarnecki and U. Eisenecker. Generative Program-
ming: Methods, Techniques, and Applications. Addison-
Wesley, 1999.

[6] E. Dashofy, A. van der Hoek, and R. Taylor. A highly-
extensible, xml-based architecture description language.
In Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA’01), pages 103–112, Amsterdam, The
Netherlands, 2001. IEEE CS.

[7] D. Dhungana, P. Grünbacher, and R. Rabiser. Domain-
specific adaptations of product line variability modeling.
In J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers,
editors, IFIP WG 8.1 Working Conference on Situational
Method Engineering: Fundamentals and Experiences,
pages 238–251, Geneva, Switzerland, 2007. Springer.

[8] D. Dhungana, T. Neumayer, P. Grünbacher, and R. Ra-
biser. Supporting evolution in model-based product line
engineering. In 12th Int’l Software Product Line Con-
ference, pages 319–328, Limerick, Ireland, 2008.

[9] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neu-
mayer. Integrated tool support for software product line
engineering. In 22nd IEEE/ACM Int’l Conf. on Auto-
mated Software Engineering (ASE’07), pages 533–534,
Atlanta, Georgia, USA, 2007. ACM.

[10] T. Dolan, R. Weterings, and J. Wortmann. Stakeholders
in software-system family architectures. In F. van der
Linden, editor, Second Int’l ESPRIT ARES Workshop on
Development and Evolution of Software Architectures
for Product Families (ARES’98), volume LNCS 1429,
pages 172–187, Las Palmas de Gran Canaria, Spain,
1998. Springer Berlin Heidelberg.

[11] H. Gomaa. Designing Software Product Lines with
UML. Addison-Wesley, 2005.

[12] R. E. Grinter. Recomposition: putting it all back to-
gether again. In CSCW ’98: Proceedings of the 1998
ACM conference on Computer supported cooperative
work, pages 393–402, New York, NY, USA, 1998.
ACM.

[13] G. Halmans and K. Pohl. Communicating the variability
of a software-product family to customers. Informatik -
Forschung und Entwicklung, 18(3-4):113–131, 2004.

[14] F. Heidenreich and C. Wende. Bridging the gap be-
tween features and models. In 2nd Workshop on Aspect-
Oriented Product Line Engineering (AOPLE’07) co-
located with the International Conference on Generative
Programming and Component Engineering (GPCE’07).
ACM Press, 2007.

[15] A. Helferich, K. Schmid, and G. Herzwurm. Product
management for software product lines: an unsolved
problem? Commun. ACM, 49(12):66–67, 2006.

[16] J. Hunt. Organizing the asset base for product deriva-

tion. In L. O’Brian, editor, Proceedings of the 10th Int’l
Software Product Line Conference (SPLC 2006), pages
65–74, Baltimore, MD, USA, 2006. IEEE CS.

[17] I. John. Integrating legacy documentation assets into a
product line. In F. van der Linden, editor, Lecture Notes
in Computer Science: Software Product Family Engi-
neering: 4th Int’l Workshop, PFE 2001, volume LNCS
2290, pages 113–124. Springer, 2002.

[18] K. Jorgenson. Product modeling on multiple abstraction
levels. In T. Blecker and G. Friedrich, editors, Int’l Se-
ries in Operations Research and Management Science
– Mass Customization: Challenges and Solutions, vol-
ume 87, pages 63–84. Springer New York, 2006.

[19] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peter-
son. Feature-oriented domain analysis feasibility study.
Technical report, CMU/SEI TR-21, USA, 1990.

[20] K. Kang, P. Donohoe, E. Koh, J. Lee, and K. Lee. Using
a marketing and product plan as a key driver for product
line asset development. In G. Chastek, editor, Lecture
Notes in Computer Science: Second Software Product
Line Conference - SPLC 2, volume LNCS 2379, pages
366–382. Springer Berlin / Heidelberg, 2002.

[21] M. Matinlassi. Comparison of software product line ar-
chitecture design methods: Copa, fast, form, kobra and
qada. In 26th Int’l Conference on Software Engineering
(ICSE’04), pages 127–136, Edinburgh, Scotland, 2004.
IEEE CS.

[22] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of vari-
ability in software product lines: A separation of con-
cerns, formalization and automated analysis. Require-
ments Engineering, IEEE International Conference on,
0:243–253, 2007.

[23] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles, and
Techniques. Springer, 2005.

[24] R. Rabiser, D. Dhungana, P. Grünbacher, and
B. Burgstaller. Value-based elicitation of product line
variability: An experience report. In P. Heymans,
K. Kang, A. Metzger, and K. Pohl, editors, 2nd Int’l WS
on Variability Modelling of Software-intensive Systems,
volume 22, pages 73–79, Essen, Germany, 2008. ICB
Report No. 22, Univ. Duisburg Essen.

[25] M.-O. Reiser and M. Weber. Managing highly com-
plex product families with multi-level feature trees. In
14th IEEE Int’l Requirements Engineering Conference
(RE’06), pages 149–158, Minneapolis, MN, USA, 2006.
IEEE CS.

[26] K. Schmid and I. John. A customizable approach to full-
life cycle variability management. Journal of the Sci-
ence of Computer Programming, Special Issue on Vari-
ability Management, 53(3):259–284, 2004.

[27] M. Völter and I. Groher. Product line implementation
using aspect-oriented and model-driven software devel-
opment. In Software Product Lines, 11th International
Conference, SPLC 2007, Kyoto, Japan, September 10-
14, 2007, Proceedings, pages 233–242, 2007.

VaMoS'09

82

Functional Variant Modeling for Adaptable Functional Networks

Cem Mengi and Ibrahim Armaç
Department of Computer Science 3

Software Engineering
RWTH Aachen University, 52074 Aachen, Germany

{mengi|armac}@i3.informatik.rwth-aachen.de

Abstract

The application of functional networks in the automotive
industry is still very slowly adopted into their development
processes. Reasons for this are manifold. A functional net-
work gets very quickly complex, even for small subsystems.
Furthermore, concepts for variability handling are not suf-
ficient for future standards such as AUTOSAR. In this pa-
per we will provide an approach to reduce the size of func-
tional networks by applying abstraction and partitioning.
The achieved improvements will be described. In addition
we will provide an alternative concept to handle variants in
functional networks. The approach is based on extracting
variation points from the functional network and modeling
them separately. Open problems and future work are dis-
cussed at the end.

1 Introduction

Today the automotive industry provides customers a lot
of possibilities to individualize their products. They can se-
lect from a huge set of optional fittings, e.g., parking assis-
tant, rain sensor, intelligent light system, and/or comfort ac-
cess system. The possibility to configure individual vehicles
leads to the situation that both OEMs (Original Equipment
Manufacturers) and suppliers have to capture explicitly po-
tential variation points in their artifacts so that a software
product line can be established to overcome the develop-
ment complexity [6].

For requirements specification this is often done with so
called feature models [4], where customer visible variants
of the vehicle are captured. After requirements specifica-
tion, a functional network is established, which consists pri-
marily of interacting functions. Ideally, it should be used as
a first concretion of the features and should help the en-
gineer to understand the problem domain in a better way.
Variation points in functional networks are captured implic-
itly by modeling a so called maximal functional network.

The idea is to capture every function of the vehicle, e.g.,
a sensor, an actuator, a control algorithm etc., and to gen-
erate variants by removing specific parts of the functional
network.

This way of variant handling is possible since the
automotive software development process is hardware-
dependent. A functional network is designed with detailed
technical knowledge, such as the used communication in-
frastructure and deployment information of the functions.
Therefore, deleting parts of a functional network can be re-
garded equally to deleting ECUs (Electronic Control Units)
from the vehicle topology. We will call this kind of func-
tional networks in this paper as technical functional net-
works.

The advantage of such an approach is that it is simple,
so that development costs for variant handling can be kept
down. Furthermore, virtual prototyping, i.e., behavior sim-
ulation on a PC, and rapid prototyping, i.e., real-time simu-
lation on a controller of a rapid prototyping system or on an
ECU could be almost directly adopted. This is possible be-
cause the functional network specifies the interfaces of the
functions along with their communication. By implement-
ing the behavior which is compliant to the defined interfaces
a prototyping system can be set up.

Nevertheless, there are also some disadvantages. Even
a technical functional network brings advantages such as
simplicity and prototyping possibilities, its size gets very
quickly vast so that it rather complicates the tasks of an en-
gineer instead of supporting him. Furthermore, the automo-
tive industry is currently performing a paradigm-shift from
a hardware-driven development process to a function-driven
development process, to counteract the ever increasing soft-
ware complexity. The results of this efforts were specified
by the AUTOSAR consortium [1]. Basically, AUTOSAR
decouples the infrastructure from application software by
introducing an abstraction layer between them. This implies
that application software can now be developed indepen-
dently from the hardware. Therefore, the methodology to
capture and generate variants in a maximal functional net-

VaMoS'09

83

work will not be the solution for the near future.
The mentioned two problems, i.e., complexity of a tech-

nical functional network and insufficient concepts for han-
dling variants, involve that the application of functional net-
works in the automotive industry is still very slowly adopted
into their development processes.

In this paper we will introduce an approach to facili-
tate the extensive use of functional networks by reducing
their complexity and providing an alternative concept for
variability handling without losing the advantages such as
simplicity and prototyping possibilities. The complexity re-
duction is primarily achieved by applying abstraction and
partitioning. Abstraction is applied by identifying func-
tions with similar semantic. This is also done for connec-
tions between functions. They are grouped to abstract func-
tions and connections. For partitioning we identify parts
of the functional network, i.e., functions and their connec-
tions which are used to model a specific characteristic of
the system. For variability handling we will use a restricted
form of feature models which are tailored for automotive
functional networks. We will call them functional variant
models. In this way we can extract variants from functional
networks and model them separately with functional vari-
ant models. The result will be a functional network which
is modeled on a logical level (in the following called logi-
cal functional network). Particularly, the configuration of a
technical functional network from a logical functional net-
work will be possible for utilizing the advantages of virtual
and rapid prototyping.

This paper is structured as follows. In Section 2 we will
describe the problems that we are dealing with in this paper.
For this purposes we will introduce an example that is used
for the whole paper. With the example we will describe the
covered problems, i.e., the size of functional networks and
variability handling. In Section 3 we will present our ap-
proaches to solve the mentioned problems. In Section 4 we
will describe related work and in Section 5 we will discuss
open problems and future work. Finally, in Section 6 we
will summarize the paper.

2 Problem Description and Challenges

In this section we will describe the covered problems in
detail. Therefore we will introduce an example, which will
be used for the whole paper. Our department has gained
experience on automotive software development processes
by collaboration with an OEM in Germany. The example is
constructed with that knowledge.

2.1 Example: Vehicle Access System

In our example we consider a vehicle access system for
three car models. A vehicle access system is primarily a

Table 1. Three car models and their sup-
ported features.

Model 1 Model 2 Model 3
Active Access x x x
Passive Access x x
Automatic Door Close x
Selective Unlock x x
Anti-Theft System x x
Immobilizer x
Crash Unlock x x x
Drive Lock x x x

central locking system with additional features that extends
a classical central locking with security and comfort fea-
tures. In Table 1 we listed the features and marked those
that will be supported by the appropriate model.

For example, an active access denotes a feature that sup-
ports the entry into the car by using the mechanical key or
the remote control. In contrast to this, in a passive access a
user can enter the vehicle without actively using a key. He
only needs to carry the remote control with him which is
extended by an identification transmitter so that the vehicle
can identify the authorized user. While model 1 and 3 sup-
port both features, model 2 only supports the active access.

The automatic door close is a feature that closes the
door automatically. The user needs only to push the door
smoothly into the lock. Then the door will be completely
closed by a motor that is installed inside the door.

If selective unlock is supported, it is possible to unlock
the doors sequentially. For example, if the unlock button of
the remote control is pressed once, only the driver’s door
will be opened. By pressing the button a second time all
other doors will be opened.

The anti-theft system and the immobilizer are security
features which prevent the unauthorized use of the car.
While the anti-theft system blocks the steering wheel, the
immobilizer additionally controls the engine and gearbox.
Since the immobilizer includes in our example also the
blocking of the steering wheel, these two features can only
be selected alternatively.

Finally, the crash unlock feature unlocks the doors in
crash situations, while the drive lock feature locks the doors
after achieving a predefined speed.

If an OEM specifies the requirements for its vehicle
models, commonalities and variability in the sense of the
software product line paradigm are determined [6]. This
has the advantage that common aspects of an artifact can be
used for all models, while only variable aspects, which dif-
ferentiate the products, have to be treated. Commonalities
and variability for requirements specification are typically

VaMoS'09

84

Figure 1. An example for a feature model of
the vehicle access system.

captured with feature models. In Figure 1 we designed a
feature model for our example. It has mandatory-, optional-
and alternative-features, while or-features are not existent.

As mentioned before, OEMs currently try to cover the
variability problem in functional networks by modeling a
maximal technical functional network. This is an approach,
which has advantages when it is applied to hardware-driven
development processes. If the paradigm shift to a function-
driven approach should be successfully achieved, the mod-
eled functions must be considered on a logical level. Beside
of this, it is not always straightforward to build maximal
models, since there exist complex dependencies between
functions. For example, there are functions with exclusive
properties. In Figure 1 this is the case for the anti-theft sys-
tem and the immobilizer. Furthermore, a function could
require another function, so that by building a variant this
constraint must be considered.

In Figure 2 we have build a maximal functional network
for the vehicle access system by using the component dia-
gram of UML (Unified Modeling Language) [2]. Functions
are modeled as components and signals are modeled as con-
nectors between ports. Incoming ports are marked white,
while outgoing ports are marked black.

2.2 Size of Functional Networks

Figure 2 illustrates a functional network for the vehicle
access system. We had defined 8 features, which are con-
cretized in the functional network with about 45 functions
and 113 connections. As one can see, the functional net-

work gets very quickly very complicated, even for such a
small example. We did not further modeled the anti-theft
system and immobilizer in detail in order to avoid further
complexity. It is obvious that a functional network for the
whole vehicle is unusable.

Reasons for this complexity are multisided. First, the
functional network for the vehicle access system presents a
maximal model. Therefore, an engineer has to model for ex-
ample both the anti-theft system and the immobilizer, even
they have exclusive characteristics. Second, a system engi-
neer models such a network on a technical level. For exam-
ple, he has the knowledge about the ECU deployment of the
software-based functions with the incoming and outgoing
signals. Finally, the network includes redundant functions
such as the five drive units with the five lock/unlock signals.
For a model with two doors and a tailgate, there is no need
for five drive units but rather for three. Further examples are
the antennas and sensors.

2.3 Capturing Variants in Functional Net-
works

A further important aspect which inhibits the extensive
use of functional networks for an automotive system is, that
there exist only weak concepts for capturing variants. As
described above, OEMs try to build a maximal functional
network which is used then to derive the different variants.

This results in an enormous size of the modeled func-
tional network (see Figure 2) and therefore inhibits the use
by an engineer, because it would take more effort to under-
stand the functional network, instead of helping the engi-
neer in understanding the problem domain.

Considering a hardware-driven approach, building max-
imal functional networks are well applicable. Variants are
built mainly by adding or deleting ECUs. Through the ever
increasing software complexity OEMs and suppliers were
forced to design an alternative approach, which allows de-
coupling the software from the hardware, so that a more
logical view can be established in to the development pro-
cess. The result of this efforts were specified in the AU-
TOSAR consortium [1]. Basically, AUTOSAR decouples
the infrastructure from application software by introducing
an abstraction layer between them. This implies that appli-
cation software can be developed independently from the
hardware. This in turn allows a more logical view on func-
tional networks. Therefore we need an alternative approach
to capture variation points, where the technical view on the
functional network is completely ignored.

Adopting logical functional networks will bring surely a
lot of advantages. Nevertheless, a technical functional net-
work such as the one in Figure 2 has also some advantages.
Particularly, the functions with their signals can be nearly
directly used for virtual and rapid prototyping. To utilize

VaMoS'09

85

id
 V

eh
ic

le
 A

cc
es

s
S

ys
te

m

D
ri

ve
rs

 D
oo

r
D

ri
ve

 U
ni

t

Re
ar

 D
ri

ve
rs

D

oo
r

D
riv

e
U

ni
t

Pa
ss

en
ge

r
D

oo
r

D
riv

e
U

ni
t

R
ea

r
P

as
se

ng
er

D

oo
r

D
riv

e
U

ni
t

Fu
el

 F
ill

er

Fl
ap

 D
riv

e
U

ni
t

Ta
ilg

at
e

D
riv

e
U

ni
t

Do
or

 H
an

dl
e

Tr
ig

ge
r

Dr
iv

er
s

Do
or

D
oo

r
Ha

nd
le

Tr

ig
ge

r
R

ea
r

Dr
iv

er
s

D
oo

r

D
oo

r
Ha

nd
le

Tr

ig
ge

r
Pa

ss
en

ge
rs

Do

or

D
oo

r
Ha

nd
le

Tr

ig
ge

r R
ea

r
Pa

ss
en

ge
rs

D

oo
r

In
te

rio
r

An
te

nn
a

P
as

se
ng

er

Co
m

pa
rt

m
en

t
Fr

on
t

Ex
te

ri
or

A

nt
en

na

Re
ar

 D
riv

er
s

S
id

e

In
te

ri
or

A

nt
en

na

P
as

se
ng

er

C
om

pa
rt

m
en

t
Ce

nt
er

In
te

rio
r

A
nt

en
na

Lu

gg
ag

e
C

om
pa

rt
m

en
t

Le
ft

In
te

ri
or

An

te
nn

a
Lu

gg
ag

e
C

om
pa

rtm
en

t
Ri

gh
t

In
te

ri
or

A

nt
en

na

Lu
gg

ag
e

Co
m

pa
rtm

en
t

C
en

te
r

D
ri

ve
rs

 D
oo

r
C

on
ta

ct

Re
ar

 D
ri

ve
rs

Do

or
 C

on
ta

ct

R
ea

r
P

as
se

ng
er

s
Do

or
 C

on
ta

ct

P
as

se
ng

er
s

Do
or

 C
on

ta
ct

Ex
te

ri
or

An

te
nn

a
D

ri
ve

rs
 S

id
e

Ex
te

ri
or

A

nt
en

na

Pa
ss

en
ge

r
Si

de

Ex
te

ri
or

A

nt
en

na

R
ea

r
Pa

ss
en

ge
r

Si
de

V
eh

ic
le

Sp

ee
d

S
en

so
r

C
ra

sh
 S

en
so

r

A
ut

om
at

ic

D
oo

r C
lo

se

D
riv

er
s

Do
or

A
ut

om
at

ic

D
oo

r C
lo

se

R
ea

r
D

riv
er

s
Do

or

A
ut

om
at

ic

Do
or

 C
lo

se

P
as

se
ng

er
s

D
oo

r

A
ut

om
at

ic

D
oo

r
C

lo
se

Re

ar

P
as

se
ng

er
s

Do
or

Ex
te

rio
r

An
te

nn
a

Ta
ilg

at
e

R
em

ot
e

C
on

tro
l

M
ec

ha
ni

ca
l

Ke
y

Dr
iv

er
s

Do
or

Lo

ck
 B

ar
re

l

C
en

te
r

Lo
ck

B

ut
to

n

Ev
al

ua
te

Ce

nt
ra

l
Lo

ck
in

g

Ex
ec

ut
e

C
en

tr
al

Lo

ck
in

g

Id
en

tif
ic

at
io

n
Tr

an
sm

itt
er

Ke
y

S
lo

t

A
ut

he
nt

ic
at

io
n Do

or
 H

an
dl

e
Tr

ig
ge

r
Ta

ilg
at

e

A
nt

i-T
he

ft
S

ys
te

m

St
ee

ri
ng

W

he
el

Im
m

ob
ilz

er

En
gi

ne

G
ea

rb
ox

un
lo

ck
un

lo
ck

ed

lo
ck

ed

lo
ck

ed

do
or

C
lo

se
d

do
or

O
pe

n

lo
ck

se
le

ct
ive

U
nl

oc
k

se
le

ct
ive

U
nl

oc
k

se
le

ct
ive

U
nl

oc
k

se
le

ct
ive

U
nl

oc
k

se
le

ct
ive

U
nl

oc
k

se
le

ct
ive

U
nl

oc
k

en
ab

le

se
le

ct
ive

U
nl

oc
k

op
en

Ta
ilg

at
e

lo
ck

au
th

D
at

a

un
lo

ck

au
th

D
at

a

lo
ck

un
lo

ck

lo
ck

lo
ck

au
th

D
at

a

un
lo

ck

un
lo

ck

cl
os

eD
oo

r

re
qu

es
tA

ut
hD

at
a

cl
os

eD
oo

r

do
or

In
Lo

ck

do
or

In
Lo

ck

cl
os

eD
oo

r

lo
ck

do
or

In
Lo

ck

un
lo

ck

do
or

In
Lo

ck

au
th

D
at

a

cl
os

eD
oo

r

un
bl

oc
k

bl
oc

ke
d

au
th

D
at

a

di
sa

bl
e

lo
ck

en
ab

le

op
en

Ta
ilg

at
e

bl
oc

k

lo
ck

op
en

Ta
ilg

at
e

lo
ck

au
th

D
at

a

lo
ck

op
en

Ta
ilg

at
e

un
lo

ck

un
lo

ck

op
en

Ta
ilg

at
e

re
qu

es
tA

ut
hD

at
a

re
qu

es
tA

ut
hD

at
a

au
th

D
at

a

cr
as

h

ve
hi

cl
eS

pe
ed

un
lo

ck

au
th

D
at

a

se
le

ct
ive

U
nl

oc
k

re
qu

es
tA

ut
hD

at
a

op
en

Ta
ilg

at
e

un
lo

ck

un
lo

ck

re
qu

es
tA

ut
hD

at
a

re
qu

es
tA

ut
hD

at
a

op
en

Ta
ilg

at
e

lo
ck

Fi
gu

re
2.

A
n

ex
am

pl
e

fo
r

a
m

ax
im

al
te

ch
ni

ca
lf

un
ct

io
na

ln
et

w
or

k
of

th
e

ve
hi

cl
e

ac
ce

ss
sy

st
em

.

VaMoS'09

86

this advantage on logical functional networks we must pro-
vide an approach to configure logical functional networks
to technical functional networks.

3 Functional Variant Modeling for Adapt-
able Functional Networks

In Section 2 we have described the problems and chal-
lenges that we are dealing with. There are mainly two core
points that we have analyzed to improve the usability of
functional networks in an automotive software development
process. First, we have to reduce the size of functional net-
works to ease the work of a system engineer. He will then
be able to use this artifact to understand and describe the
problem domain in a better way. Second, variability han-
dling in functional networks requires a new approach to be
usable also for new standards such as AUTOSAR.

Our approach to reduce the size of a functional network
is based primarily on abstraction and partitioning. With ab-
straction we want to achieve a more logical view on the
functional network. This of course will affect the size of
the functional network. With partitioning we want to divide
the network into parts which belong semantically together.
Examples would be an immobilizer, a central locking unit,
or, if it would not be too big, even a vehicle access system.
With that we want to achieve further reduction of the size.

For variability handling we will present an alternative
concept for capturing variation points in functional net-
works. We want to extract variation points from the func-
tional network and model them separately with so called
functional variant models. Functional variant models rep-
resent a restricted form of feature models and are tailored
for automotive functional networks. This approach pro-
vides also the possibility to configure technical functional
networks for prototyping issues.

3.1 Size of Functional Networks

In Section 2.2 we have analyzed mainly three problems,
which influence the size of a functional network. These are
the building of a maximal model, modeling with knowledge
about technical details, and finally modeling of redundant
functions. To overcome these problems we propose to ap-
ply abstraction techniques for the last two aspects, and par-
titioning for the first one.

Considering our example in Figure 2 there are some
points, where we could apply abstraction. For example,
there are four functions to lock or unlock the doors, these
are the remote control, identification transmitter, mechani-
cal key, and center lock button. These four functions have
all the same tasks, i.e., to control the access into the vehi-
cle. We could replace the four functions by one function
which describe exactly the task of the previous functions.

For example, we could add a function called vehicle access
controller.

Another example is given by the ten functions for the
antennas which perform the task of receiving data of the
remote control and identification transmitter and to trans-
mit them to an appropriate function. The function for the
driver’s door lock barrel performs the same task for the me-
chanical key. We could replace these functions with one
function to model the same task. For example, we could
add a function called data transceiver.

The five functions for the door handle trigger in Figure 2
could be replaced by one function called door handle trig-
ger.

The same technique could be applied to the drive units
for the four doors, the tailgate, and the fuel filler flap. This
would mean, that we could replace six functions with one
function, for example called lock/unlock drive unit.

The functions for the door contacts could be reduced in
the same manner, i.e., we replace the four functions with
one function called for example door contact.

Finally, we do not need four functions for the automatic
door close, but instead only one function called for example
automatic door close.

Summarizing the achievements, we see that we can re-
place 34 functions with 6 functions, which of course reduce
the size of the functional network enormously. Note that by
reducing the number of functions, we also reduce the num-
ber of redundant connections.

Another approach to reduce the size of the functional
network is to divide the network into semantically equal
parts, which we call partitions. For our example in Fig-
ure 2 this could be the active/passive access, automatic door
close, anti-theft system, and the immobilizer. Note that there
must not be necessarily a one-to-one mapping between the
features defined in Figure 1 and the partitions.

Figure 3 illustrates the result after applying abstraction
and partitioning to the vehicle access system in Figure 2.
Obviously, the four partitions are now more readable. We
have achieved this by modeling semantically equal parti-
tions instead of the maximal functional network for the ve-
hicle access system. Furthermore, we use abstraction as de-
scribed above, so that the size gets more reduced.

Compared to the maximal functional network, which
consists of 45 functions and 113 connections, the four par-
titions totally has 15 functions and 27 connections. Obvi-
ously, this is an improvement.

In an automotive development process which is adapted
to AUTOSAR it would be ideal that such abstraction and
partitioning techniques are done when the functional net-
work is designed the first time. In that case the system engi-
neer who has the specialized knowledge should regard such
techniques. For the case that a functional network is reused
the adaptation must be done by reengineering the network.

VaMoS'09

87

id
 V

A
S

 A
ct

iv
e/

P
as

si
ve

 A
cc

es
s

V
eh

ic
le

S

pe
ed

S

en
so

r

C
ra

sh
 S

en
so

r

Ev
al

ua
te

C

en
tr

al

Lo
ck

in
g

Ex
ec

ut
e

C
en

tr
al

Lo

ck
in

g

A
ut

he
nt

ic
at

io
n

V
eh

ic
le

A

cc
es

s
C

on
tr

ol
le

r

D
at

a
Tr

an
sc

ei
ve

r

Lo
ck

/U
nl

oc
k

D
ri

ve
 U

ni
t

D
oo

r
C

on
ta

ct

lo
ck

au
th

D
at

a

lo
ck

un
lo

ck

au
th

D
at

a

lo
ck

un
lo

ck

lo
ck

un
lo

ck lo
ck

di
sa

bl
e

do
or

O
pe

n

do
or

C
lo

se
d

un
lo

ck

ve
hi

cl
eS

pe
ed

cr
as

h

en
ab

le

un
lo

ck

(a
)

A
ct

iv
e/

Pa
ss

iv
e

A
cc

es
s

id
 V

A
S

 A
u

to
m

a
ti

c
 D

o
o

r
C

lo
s
e

L
o

c
k
/U

n
lo

c
k

D
ri

v
e

 U
n

it
D

o
o

r
C

o
n

ta
c
t

A
u

to
m

a
ti

c

D
o

o
r

C
lo

s
e

c
lo

s
e
D

o
o
r

d
o
o
rI
n
L
o
c
k

(b
)

A
ut

om
at

ic
D

oo
rC

lo
se

id
 V

A
S

 A
n

ti
-T

h
e

ft
 S

y
st

e
m

L
o

c
k
/U

n
lo

c
k

D
ri

v
e

 U
n

it
A

u
th

e
n

ti
c
a

ti
o

n
A

n
ti

-T
h

e
ft

S

y
st

e
m

S
te

e
ri

n
g

W

h
e

e
l

u
n
b
lo

c
k

b
lo

c
k
e
d

b
lo

c
k

lo
c
k
e
d

u
n
b
lo

c
k

(c
)

A
nt

i-
T

he
ft

Sy
st

em

id
 V

A
S

 I
m

m
o

b
il

iz
e

r

E
va

lu
a

te

C
e

n
tr

a
l

L
o

ck
in

g

S
te

e
ri

n
g

W

h
e

e
l

Im
m

o
b

il
ze

r

E
n

g
in

e

G
e

a
rb

o
x

en
ab

le
di

sa
bl

e
bl

oc
k

(d
)

Im
m

ob
ili

ze
r

Fi
gu

re
3.

A
pp

lic
at

io
n

of
ab

st
ra

ct
io

n
an

d
pa

rt
iti

on
in

g
to

th
e

ve
hi

cl
e

ac
ce

ss
sy

st
em

.

VaMoS'09

88

Figure 4. The structure of a functional variant
model.

3.2 Capturing Variants in Functional Net-
works

In Section 2.3 we have analyzed, that the automo-
tive industry currently performs a paradigm-shift from a
hardware-driven approach to a function-driven approach, to
overcome the ever increasing software complexity. Particu-
larly, the standardization of AUTOSAR is an important step
towards this goal. The standard implies that vehicle func-
tionality can be developed independently from the given in-
frastructure, which allows a more logical view. Therefore,
the approach of modeling a maximal technical functional
network to capture variation points will not be the solution
for future development methodologies because it has the
disadvantage that it becomes very complex and is hardly
coupled to the hardware. However, it has the advantage that
a technical functional network could be used in a simple
way for virtual and rapid prototyping.

Adopting a logical functional network involves new re-
quirements for modeling of variants. For example, by ab-
stracting functions we lose information about existing vari-
ants. Therefore, we need a concept where we can gain the
information back again. Furthermore, it should be possible
to generate a technical functional network to utilize proto-
typing.

We propose an approach that is based on the concept of
feature models, but is restricted and tailored for variants
in logical functional networks. Variants are captured sep-
arately with functional variant models. In Figure 4 we have
illustrate the structure. Variation points and their variants
are modeled in a tree-based structure. The root consists of
the modeled partition type and its name. We have defined

Figure 5. An example for a functional variant
model for the vehicle access controller func-
tion.

four types, namely mandatory, optional, or, and alternative.
In this way we can express the characteristic of a partition.
For example, in Figure 3(b) the automatic door close par-
tition is an optional partition. On the next level we have
defined the variation point that is extracted from the techni-
cal functional network. A variation point can be a function
or a signal. The next level contains the variant type and
its name. Similar to partitions, we also have defined four
variant types, namely mandatory, optional, or, and alterna-
tive. And finally, on the last level the incoming and outgoing
signals are listed. Incoming signals must be denoted with
its source and signal name, while outgoing signals must be
denoted with its signal name and sink. The source, signal
name, and sink can all be variation points. In this way, we
can build a hierarchy in our models. Note that a functional
variant model never exceed the described four levels and
therefore enhances the visibility of variability information.

In Figure 5 we have built a functional variant model for
the vehicle access controller from Figure 3(a). A vehicle
access controller has mandatory functions such as the me-
chanical key, remote control, and center lock button. These
functions are related to the active access feature from Fig-
ure 1. Furthermore, the vehicle access controller exhibits an
optional function, identification transmitter, which allows
the passive access into the vehicle (see Figure 1). Par-
ticularly, we have build the premises to generate a techni-
cal functional network from the logical functional network
from Figure 3(a) together with the functional variant model
from Figure 5. By capturing the function and signal in-
formation it would be possible, if an configuration frame-
work is established, to regenerate a functional network that

VaMoS'09

89

Figure 6. An example for constraints expression between functional variant models.

is ready for virtual and rapid prototyping. If we would not
model the information in this way, we were not able to dis-
tinguish for example between the function mechanical key
and the functions remote control, identification transmitter,
and center lock button, which all are disabled in a crash sit-
uation (see the incoming signals of these functions in Fig-
ure 2).

Since not all configurations will be valid, we have to in-
troduce a method which allows expressing constraints be-
tween functional variant models. An example for this is
shown in Figure 6. Only if the identification transmitter
is selected, we also have to select all exterior and interior
antennas (for the remote control we only need the exterior
antenna tailgate). We do not propose a specific constraint
language in this paper but rather give a remark that this will
also be investigated in future work.

The proposed approach allows that the variability in-
formation that was loosed when we have applied abstrac-
tion and partitioning to reduce the size of a functional net-
work can be gained back again. Particularly, we have the
premises to introduce a configuration framework that allows
generating a technical functional network for prototyping
purposes.

4 Related Work

There exist different techniques to model variability in
a software development process. Sinnema and Deelstra
give a classification about existing techniques [7]. We have
adopted our approach for functional variant models mainly
on feature models. In this way it will be easy to synchro-
nize functional variant models with feature models. How-
ever, to avoid unnecessary complexity we have adopted our
approach to the automotive domain.

Von der Beeck describes in his paper [8] an approach

for modeling functional network with UML-RT. In our ap-
proach we did not focus on a specific architecture descrip-
tion language, but rather propose a way to reduce com-
plexity and to handle variability. Particularly, we consider
thereby the application to new standards such as AUTOSAR
[1].

Grönniger et al. propose an approach to model func-
tional networks with SysML to overcome the size and to
capture variants [3]. Therefore, they introduce views. A
view consists of a specific part of the functional network,
such as partitions in our approach. However, in [3] a
bottom-up approach is considered, i.e., it is assumed that
a complete functional network exists to apply a view on
it, while we propose a top-down approach to overcome the
complexity in functional networks, i.e., there is no need for
a maximal functional network. Furthermore, in [3] variants
are also modeled with views. We propose an approach that
captures variants separately with functional variant models
that allow generating a technical functional network to uti-
lize prototyping.

Kaske et al. propose a new approach to use virtual proto-
typing to validate functional networks [5]. While they focus
on how to setup and test functional networks, we deal with
the generation of technical functional networks by consid-
ering existing variants.

5 Discussion and Future Work

In this section we want to discuss open problems which
have to be tackled in future work. The first question that
arises is how to integrate feature models from requirements
specification with functional variant models. Obviously,
there is a strong relationship between these two artifacts.
For example, an active access feature from Figure 1 is re-
lated to the mechanical key, remote control, and center lock

VaMoS'09

90

button functions of the vehicle access controller. One task
thereby is to ensure the modification consistency between
these two artifacts. Furthermore, a variant configuration
must be properly forwarded to the appropriate artifacts and
checked if it is correct. For this purposes a framework is
needed that controls the consistency and the configuration
between these artifacts.

In Section 3 we have seen that a functional network is
divided into multiple partitions and therefore multiple func-
tional variant models will be necessary to capture the exist-
ing variation points. An example is illustrated in Figure 6,
where we have the variation points vehicle access controller
and data transceiver. Note that these two variation points
are included in the same partition, but they could also be
modeled in the way, so that they belong to different parti-
tions. The problem still remains the same. The decision
about selecting the identification transmitter is related to
the decision of selecting the optional exterior and interior
antennas. Therefore there is a need to handle the consis-
tency between all functional variant models. A constraint
language would be appropriate to specify the constraints.

Since we want to generate technical functional networks
from logical ones, we also have to give the possibility to re-
late functional variant models with functional networks in
order to propagate the variant configuration information to
the functional network. For example, if the functional vari-
ant model for the vehicle access controller in Figure 5 could
be related to the logical functional network in Figure 3(a),
we would have enough information to generate a technical
functional network.

An obvious question that immediately arises is how this
generation would be provided. Particularly, we have to en-
sure that incoming and outgoing signals are mapped cor-
rectly. For example, the mechanical key has no incoming
signals compared to the remote control, identification trans-
mitter, and center lock button. If the vehicle access con-
troller is generated to a technical functional network, the
signal information must be considered. Furthermore, func-
tions such as the door handle trigger which have no explicit
variation point in the logical functional network (compare
the Figures 2 and 3(a)), must be completely inserted into
the functional network.

Another important point which has to be handled is the
integration of partitions. If an engineer wants to consider
the functional network of two partitions that are related, we
must provide a method to join them together. For example,
if the active/passive access partition (Figure 3(a)) and the
immobilizer partition (Figure 3(d)) should be integrated, the
evaluate central locking functions from both partitions must
be unified, and that the disable signals must be sent from
one port.

Finally, tool support for the explained concepts must
be provided. Currently, we are considering the problems

on a conceptual level in order to analyze existing prob-
lems. Particularly, we believe that there is a need for tools
that are tailored for the automotive domain. For example,
a graphical functional network editor which only includes
necessary concepts enhancing usability would help to sup-
port the application of functional networks in the develop-
ment process. The same is valid for the functional variant
model. Nevertheless, we must also consider the concepts
on a higher level of abstract to investigate their generaliza-
tion and compare them with alternatives. In this way we
can make statements about the benefits of the proposed ap-
proach.

6 Summary

In this paper we have dealt with two problems, namely
the complexity and insufficient concepts for variability han-
dling in functional networks. To understand the problems
in a better way we have analyzed the current development
methodology. It is primarily based on modeling a maximal
functional network and building variants by removing spe-
cific parts of the network. This process has the disadvantage
that it is hardly coupled to the hardware infrastructure and
becomes very quickly unclear.

To overcome this we have presented an approach to re-
duce the size of functional networks in order to support
the extensive use in automotive software development. For
this purpose we have applied abstraction and partitioning.
The size reduction provides an improved visibility. Further-
more, the design of a functional network for a system en-
gineer will become more simple, since technical details can
be neglected. However, if a technical functional network is
reused appropriate adaptations have to be done in order to
build a logical functional network. For a completely new
designed functional network, the adaptations should be di-
rectly regarded.

If the mentioned two techniques are applied to reduce the
size of the functional network, we lose the implicit variabil-
ity information. To get the information back, we have pro-
posed the approach of functional variant models. It provides
the possibility to extract variation points from the functional
network and model them separately in a tree-based structure
that is tailored to the automotive domain. Thus, the func-
tional network gets more clear. Moreover, variation points
are now explicitly identifiable. In addition, the functional
variant model has at most four levels but allows to build hi-
erarchies between functional variant models. It is therefore
manageable and allows to integrate a structure into the mod-
els. Nevertheless, we have to consider the open problems,
such as the integration with feature models, the dependen-
cies between functional variant models, and the generation
of a technical functional network from a logical one.

VaMoS'09

91

References

[1] AUTOSAR Website. http://www.autosar.org.
[2] Unified Modeling Language Website. www.uml.org.
[3] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Roth-

hardt, and B. Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In 4th Euro-
pean Congress ERTS - Embedded Real Time Software, 2008.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[5] A. Kaske, G. François, and M. Maier. Virtual prototyping
for validation of functional architectures. In 3rd European
Congress ERTS - Embedded Real Time Software, Société des
Ingénieurs de l’Automobile (SIA), Toulouse, France, 2006.

[6] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering : Foundations, Principles and Tech-
niques. Springer, September 2005.

[7] M. Sinnema and S. Deelstra. Classifying variability mod-
eling techniques. Information and Software Technology,
49(7):717–739, July 2007.

[8] M. von der Beeck. Function Net Modeling with UML-RT:
Experiences from an Automotive Project at BMW Group. In
N. J. Nunes, B. Selic, A. R. da Silva, and J. A. T. lvarez, edi-
tors, UML Satellite Activities, volume 3297 of Lecture Notes
in Computer Science, pages 94–104. Springer, 2004.

VaMoS'09

92

Modelling Imperfect Product Line Requirements with Fuzzy Feature Diagrams

Joost Noppen
Computing Department
University of Lancaster

Infolab21, Southdrive, Lancaster
LA1 4WA, United Kingdom
j.noppen@comp.lancs.ac.uk

Pim van den Broek
Department of Computer Science

University of Twente
P.O. Box 217, 7500 AE Enschede

The Netherlands
pimvdb@ewi.utwente.nl

Nathan Weston
Computing Department
University of Lancaster

Infolab21, Southdrive, Lancaster
LA1 4WA, United Kingdom
westonn@comp.lancs.ac.uk

Awais Rashid
Computing Department
University of Lancaster

Infolab21, Southdrive, Lancaster
LA1 4WA, United Kingdom
marash@comp.lancs.ac.uk

Abstract

In this article, we identify that partial, vague and con-
flicting information can severely limit the effectiveness of
approaches that derive feature trees from textual require-
ment specifications. We examine the impact such imperfect
information has on feature tree extraction and we propose
the use of fuzzy feature diagrams to address the problem
more effectively. This approach is then discussed as part of
a general research agenda for supporting imperfect infor-
mation in models that are used during variability analysis.

1 Introduction

With the increasing demand for software systems in a
large variety of environments, software companies need to
minimize development time and effort to remain compet-
itive in the market. Over the years, software product lines
(SPL) have become a popular means to attain these goals. In
particular when families of products with overlapping func-
tionalities must be provided, production time and cost of
development can be significantly reduced by setting up an
SPL infrastructure [17].

One of the most critical steps in SPL development is the
identification of variable and common elements in the prod-
ucts that are to be supported. This stage determines which
reusable assets and variability mechanisms will be included
and the effectiveness of the SPL in supporting the product

family. To aid software architects, many approaches have
been proposed to describe and model variability and com-
monality of SPLs of which, arguably, feature modelling is
the most well-known.

In spite of these efforts, deriving an accurate variabil-
ity model from requirement documents remains a hard and
complex activity. In [14] it has been identified that the vast
majority of all requirement documentation is described in
natural language. And as natural language is inherently
inaccurate, even standardized documentation will contain
ambiguity, vagueness and conflicts. Moreover, the require-
ments documentation of SPLs does not solely consist of
standardized specifications. Rather, it consists of a range
of documents that complement traditional requirement doc-
uments, such as business plans, marketing studies and user
manuals.

This fragmentation of requirement documentation is al-
ready considerable for pro-active SPL design, when the var-
ious common assets and variations in a product line are de-
signed upfront based on assumptions and estimates of fore-
seeable demands. When the variations are built into the
product line incrementally driven by market needs (reac-
tive SPL design) or when the product line is engineered by
tailoring an existing product that is used as a baseline (ex-
tractive SPL design), requirements documentation becomes
even more fragmented and inaccurate. Requirements can
originate from various unrelated sources and can initially
be specified without an SPL context in mind. The specifi-
cations that result generally are unfit for accurate SPL de-
velopment as the ambiguous and unclear definitions hinder

VaMoS'09

93

the accurate representation and analysis of variability and
commonality.

In this article, we examine the influence such imperfect
information has on the definition of variability models and
its consequences during SPL development. In particular,
we examine the stage that tries to derive feature trees from
requirement documentation. Based on the identified prob-
lems, we define an approach and research agenda for deal-
ing with imperfect information during feature tree definition
more effectively. To illustrate these results, an approach [2]
that derives feature trees by clustering requirements based
on their similarity is taken as a case study.

The remainder of this article is as follows. In Section 2,
the problem of imperfect information during SPL develop-
ment is defined. Section 3 explores the impact of imperfect
information on approaches that cluster requirements to form
feature trees and analyses how imperfect information influ-
ences their effectiveness. Our approach for capturing imper-
fection during feature tree derivation is described in Section
4 and in Section 5 we discuss and define the research agenda
for imperfect information support in variability modelling.
Related work is discussed in Section 6 and Section 7 con-
cludes.

2 Imperfect Information in SPL Develop-
ment

2.1 Introduction

Successful SPL development requires a considerable
amount of information on, for example, the products to
be supported, expectations of the product line architecture,
etc.. But as we have identified in Section 1, the require-
ments documentation generally contains vagueness, ambi-
guities, conflicts or information is missing completely. For
this reason, the available information might not be fit as in-
put for the design of an SPL.

To demonstrate the impact imperfect information can
have on SPL development, consider a software product line
of home automation systems. These systems are designed
to automatically co-ordinate various devices present in the
users home in order to regulate lighting, heating, fire con-
trol and various other concerns via centralised control by
the inhabitant. The following excerpt originates from the
requirement definition that originally appeared in [1].

1. Access control to some rooms may be re-
quired. The inhabitants can be authenticated
by means of a PIN introduced in a key-
pad, passing an identification card by a card
reader, or touching a fingerprint reader.

2. If the opening of a window would suppose
a high energy consumption, because, for in-

stance, the heater is trying to increase the
room temperature and it is too cold outside,
the inhabitants will be notified through the
GUI.

When examining these descriptions, it can be seen that
the information provided can hinder successful SPL devel-
opment. There are a number of statements that contain
ambiguity. For example, requirement 1 states that “some”
rooms “may” require access control. They word may in this
context can mean that it is optional to have access control
for a product of the SPL, but it can also mean that it is op-
tional to be included in SPL all together. The second re-
quirement states that a check should be made on whether
opening a window leads to “high” energy consumption.
It does not specify what high energy consumption exactly
means and whether this is defined by an inhabitant or it
should be determined by the Smart Home.

When this information is used during SPL development,
the software architects will use the interpretations that seem
most logical. However, the interpretation that is chosen will
make a huge difference for the resulting SPL. When high
energy consumptions is to be determined by the inhabitant,
it will influence user interaction elements. However, when
this is to be determined by the Smart Home, it will require
changes to sensors and reasoning elements.

The traditional way of solving imperfection is to resolve
it together with the stakeholders [5]. However, such kind
of perfective modifications require assumptions on what is
actually meant by the imperfect information. When these
assumptions can be justified, this is a valid step during the
design. When such assumptions cannot be justified, how-
ever, the imperfection can only be resolved by making an
arbitrary choice between the possible interpretations.

Nonetheless, the choice of one interpretation over the
other can have considerable impact on the SPL and its effec-
tiveness. In particular the phase in which requirements are
clustered into features (whether manually or by a tool), the
consequences can be severe. The choice of interpretations
directly impacts the structure of the resulting feature tree
which is used to determine the common assets and variabil-
ity mechanisms of the SPL, two elements that are key for
the success of the SPL.

2.2 Definition of Terms

To establish a uniform terminology, we define the con-
cept of imperfect information in terms of information being
sufficient or insufficient with respect to the context in which
it is used:

• Information is considered to be sufficient with respect
to a particular context of use when it is possible to

VaMoS'09

94

come to an optimal decision in this context with only
this information.

• Information is considered to be insufficient with re-
spect to a particular context of use when the informa-
tion is not sufficient for this context.

The concept of sufficiency relates information to the con-
text in which it is to be used. Depending on decisions to be
taken, the available information can or can not suffice to
resolve the situation. For example, when the uncertain oc-
currence of an undesired event is given by a probabilistic
model, this information is sufficient to perform a risk analy-
sis. However, the probabilistic model does not provide suf-
ficient information to answer the question “Will the event
occur tomorrow?” with a yes or no. Whenever informa-
tion is insufficient for particular context of use, this can be
resolved in two ways: perfecting the information to make
it sufficient for its context or adjusting the context so the
information becomes sufficient.

Based on these definitions, perfect and imperfect infor-
mation can be defined as follows:

• Information is considered to be perfect when it is suf-
ficient in any context of use.

• Information is considered to be imperfect when it is
not perfect.

3 Feature Trees from Imperfect Textual Re-
quirements

3.1 Requirements Clustering

Since its first introduction [10], feature-oriented do-
main analysis has become one of the most widely used
variability-modelling approaches. Over the years, many ex-
tensions have been proposed to this initial model, such as
FeatuRSED [8], and it has been successfully applied in the
design of software product lines. With increased use, the
formal semantics and correctness of feature diagrams has
also received increasing attention [3, 19]. But while the ex-
pressiveness and correctness support for feature diagrams
has significantly increased, systematic approaches for deriv-
ing feature trees from requirement specifications have been
few and far between.

Rather than a systematic process, the derivation of an
initial feature tree from the provided requirement descrip-
tions has remained something of a black art. The success-
ful definition of a feature tree that accurately represents the
information in the requirement specifications still depends
heavily on the intuition and experience of the software ar-
chitect. Assistance for this process has been proposed, but
this mostly consists of guidelines and heuristics [13, 6].

Nonetheless, these approaches acknowledge the difficulty
of this step as the vagueness in both requirement descrip-
tions and the understanding of what exactly constitutes a
feature severely hinders the systematic derivation of feature
diagrams.

Generally, the initial feature tree structure is determined
by performing a clustering on the requirements. Require-
ments that relate to the same concepts are grouped together
in clusters. The clustering that results forms the basis for
the features in the feature tree. However, clustering-based
approaches (implicitly) expect requirement specifications to
be clear, structured and unambiguous. Requirements can
only be clustered accurately and effectively if they are accu-
rate and free of conflicting and ambiguous information. In
practice, however, the provided requirement specifications
seldom exhibit these properties.

Ambiguous textual specifications can lead to different
clusterings depending on how the requirement is inter-
preted. It can be said therefore, that such requirement spec-
ifications provide insufficient information for accurate clus-
tering and feature tree derivation. Most times, this problem
is “resolved” by making explicit assumptions on the mean-
ing of the imperfection information, even when this can not
be justified. As a result, the resulting feature trees are based
on unjustifiable information and can have a significantly dif-
ferent structure than would have been the case otherwise.

Nonetheless, the resulting feature trees are used for de-
cisions that are critical for the success of the SPL, such as
the choice of core assets and variation mechanisms. And as
an SPL has a significantly longer lifecycle than traditional
software systems, the consequences of wrong decisions will
also be felt longer. It is therefore vital that imperfect in-
formation in requirement specifications is identified and its
influence is well understood. Rather than replacing imper-
fection with unjustifiable assumptions, the nature and sever-
ity of the imperfection should be modelled and considered
during the definition of feature trees.

In the following section, we examine the impact of im-
perfect information for a clustering approach that derives
feature trees from textual requirements documentation by
clustering requirements based on their similarity. We iden-
tify where imperfect information can manifest itself and
how it influences the effectiveness of the approach. In Sec-
tion 4, we propose an approach for handling imperfection
in textual requirements and representing it accordingly in
feature trees.

3.2 Similarity-based Requirements Clus-
tering

As indicated in the previous section, clustering of re-
quirements is used as a basis for the identification of fea-
tures that make up a feature tree. Naturally, the relevancy of

VaMoS'09

95

the resulting feature tree heavily depends on how require-
ments are clustered into features. In [2], it was argued that
such clustering can be based on the measure of similarity
between requirements, as similar requirements typically re-
late to the same concepts and therefore likely belong to the
same feature. The continued work of [2], called Arborcraft,
extends on this notion by defining an approach that clusters
textual requirement specifications based on similarity of re-
quirements.

3.2.1 Overview of the Approach

The Arborcraft approach clusters requirements together
based on the similarity these requirements exhibit from their
natural language descriptions. From the clustering that re-
sults, a feature tree is derived. In Figure 1, the phases of
Arborcraft are depicted.

In stage I, the similarity of requirements expressed in
natural language is determined using latent semantic anal-
ysis (LSA) [20]. Without going into detail, LSA considers
texts to be similar if they share a significant amount of con-
cepts. These concepts are determined according to the terms
they include with respect to the terms in the total document
space. As a result, for each pair of requirements a similarity
measure is given, represented by a number between 0 (com-
pletely dissimilar) and 1 (identical). In the figure, this result
is represented by the block Requirements Similarity Results.

Stage II uses the Requirements Similarity Results and
a hierarchical clustering algorithm to cluster requirements
that are semantically similar to form features. Small fea-
tures are clustered with other features and requirements to
form parent features. The similarity measure is therefore
used to build up the hierarchy of the feature diagram.

Finally, in stage III Arborcraft provides the possibility to
identify variability and crosscutting concerns in the require-
ments documents. Based on these results, the feature tree
can be refactored by, for example, relocating requirements
or introducing aspectual features.

Consider the similarity analysis result in Table 1. In this
table, the similarity of four requirements has been deter-
mined, R1, R2, R3 and R4. After the clustering stage of
Arborcraft, the feature tree of Figure 2 results. Require-
ments R1, R2 and R3 are clustered together on the second
level of the feature tree, as they are the most similar. As a
result of the lower similarity, R4 is clustered with the other
requirements only on the highest level. Due to a lack of
space, the refactorings of the final stage have been omitted.

3.2.2 Imperfect Information in Arborcraft

Arborcraft provides a comprehensive approach for extract-
ing feature trees from textual requirements specifications.
However, early experimentation has indicated that small,
well-structured and clear documents produce considerably

Table 1. Requirement Similarity Values
R1 R2 R3 R4

R1 1 0.9 0.6 0.4
R2 0.9 1 0.8 0.6
R3 0.6 0.8 1 0.4
R4 0.4 0.6 0.4 1

Figure 2. Feature Tree

better results than large, unstructured documents contain-
ing vagueness and ambiguity. This supports our claim in
Section 3.1 that such insufficiency can severely hinder
the effectiveness of clustering-based derivation of feature
diagrams. The impact of imperfect information on the
Arborcraft approach can be identified in the following
areas:

Requirements clustering
Imperfect information influences the step of clustering
requirements. The similarity of requirements is determined
by evaluating the amount of concepts that are shared
between them. But as indicated before, natural language
naturally contains ambiguities and depending on which
interpretation is compared to the other requirements, the
results of the similarity analysis will differ. It is therefore
vital that the similarity analysis is provided with clearly
defined specifications if it is to provide accurate results.

Feature tree derivation from clusters
For the step from clusters to feature trees, there is no direct
influence of imperfect information. However, this step
uses the clustering result of the previous step and assumes
that these results are accurate and reliable. Moreover, this
stage aims to come up with a single feature tree, which
is realistically speaking neither possible nor desirable
given the presence of imperfect information. By having to
commit to one particular feature tree, the software architect
is forced to commit to the chosen interpretations for the
identified imperfection in the clustering step.

Variability and crosscutting analysis
The final stage of Arborcraft searches for variability and
crosscutting by analysing the requirements based on their
clustering in the feature tree. This stage uses semantic anal-

VaMoS'09

96

Figure 1. The stages of Arborcraft

ysis of the textual requirement descriptions, which means
the imperfection in natural language naturally influences the
effectiveness of the result. Again, unjustifiable assumptions
can be required to come up with refactorings for the feature
tree. Moreover, this stage does not ensure that for both the
clustering and the proposed refactorings the same interpre-
tations and assumptions have been considered.

4 Imperfection Support for Feature Tree
Derivation

4.1 Introduction

We propose a coherent approach for handling imperfect
information during the derivation of feature trees from tex-
tual requirements. The main element of the approach is
the fuzzy feature diagram, an extension to traditional fea-
ture diagrams that can capture ambiguous requirements and
describe how they can be part of multiple features simulta-
neously. This extension is then used to accommodate the
influence of multiple interpretations for ambiguous infor-
mation in the textual requirement documents. Our approach
consists of three steps:

1. Model imperfection in textual requirements

2. Clustering of requirements including imperfection

3. Derivation of a fuzzy feature diagram

Our proposed approach focuses on ambiguous informa-
tion, i.e. information that can be interpreted in multiple
ways. The first two steps are aimed at handling the mul-
tiple interpretations of ambiguous informationthat is found
in textual requirement documents. The third step uses fuzzy
feature trees to describe the clustered ambiguous informa-
tion, rather than attempting to describe this information us-
ing traditional feature diagrams. In the following sections,
we describe these steps in more detail.

4.2 Modelling Ambiguous Requirements

The first extension is explicit modelling of ambiguous in-
formation in the textual requirement specifications. For all

identified ambiguities, instead of considering a single inter-
pretation, all relevant interpretations are described. More-
over, each interpretation is attributed with a relevance value,
a number between zero and one that indicates the perceived
relevance of the interpretation. The single imperfect re-
quirement therefore is replaced by a fuzzy set1 of interpre-
tations.

Requirements that are defined using fuzzy sets of inter-
pretations are called fuzzy requirements and were first pro-
posed in [15]. The identification of the interpretations and
the definition of their relevance values will be done in close
cooperation with the stakeholders. In subsequent steps, all
identified interpretations are included in the development
process as normal requirements. Note that, naturally, am-
biguities need to be identified before they can be modelled,
but this goes beyond the scope of this work.

To illustrate this step, in Section 2.1 we indicated that
the high energy consumption defined in the Smart Home re-
quirements can mean “pre-defined by the habitant”, but can
also mean “a measurement result from the system”. With
the extension proposed above, this imperfect requirement
is replaced with {p/“exceeds a pre-set energy consumption
level”, q/“when the system determines a high energy con-
sumption level”}, where p and q are the respective rele-
vancy values of the interpretations. The ambiguous state-
ment is now refined to two explicit interpretations, which
both can be considered in subsequent steps.

4.3 Clustering of Ambiguous Require-
ments

In Section 3.1, we have established that due to the use
of natural language generally provides insufficient informa-
tion to determine a single best clustering of requirements.
With the concept of fuzzy requirements, this problem can
now be resolved. By considering all interpretations as tra-

1Fuzzy sets allows elements to be a partial member of a set, which
can be used to describe imperfect information. The partial membership
of an element x in a fuzzy set is given by the membership value μ(x),
where μ is a function that maps the universe of discourse to the interval
[0, 1]. This value is the degree to which x is an element of the fuzzy set,
where 1 means “completely a member” and 0 means “completely not a
member”. By considering membership degree during manipulations, the
risk and impact of the modelled imperfect information can be assessed
more accurately. Due to the lack of space a more elaborate introduction is
omitted, but the interested reader is forwarded to [12].

VaMoS'09

97

ditional requirement, the clustering of requirements can be
performed in much the same way as before. However as a
result, different interpretations can end up in different clus-
ters, even when they originated from the same fuzzy re-
quirement. This essentially means that the fuzzy require-
ment has become a member of multiple clusters simultane-
ously, which is not possible with traditional clustering of
requirements.

We therefore propose to use to group requirements into
fuzzy clusters (fuzzy sets) instead of traditional, crisp clus-
ters. Requirements can be part of multiple clusters at the
same time and to differing degrees. We define the degree of
membership of an interpretation in a fuzzy cluster to be the
relevancy degree of that interpretation in the fuzzy require-
ment. A fuzzy clustering is then achieved by first clustering
all crisp requirements and interpretations using a traditional
clustering method. Then, in all the clusters that contain in-
terpretations, these interpretation are replaced by the origi-
nal imperfect requirement and they are tagged with the rel-
evancy degree of the interpretation that was replaced, thus
creating fuzzy sets.

Consider requirements R1, R2 and R3, where the imper-
fect requirement R3 is replaced with the fuzzy requirement
x/R3.1, y/R3.2. A traditional clustering of crisp require-
ments and interpretations has resulted in the clusters R1,
R3.1 and R2, R3.2. Here, the requirement R3 has become
part of two clusters due to two different interpretations. This
clustering is transformed into a fuzzy clustering by replac-
ing the interpretations in the clusters with the initial imper-
fect requirement: R1, x/R3 and R2, y/R3. As indicated,
the membership values correspond to the relevancy degrees
of the respective interpretation.

4.4 Fuzzy Feature Trees

Where traditional, crisp clustering leads to the definition
of a feature diagram, with the proposed fuzzy clustering
this is no longer possible. Therefore, our third proposed
extension is the use of fuzzy feature trees. A traditional fea-
ture tree forces the software architect to precisely nail down
variability and hierarchical structure for the software prod-
uct line. A fuzzy feature tree does not expect this kind of
precision.

In a fuzzy feature tree, requirements are clustered into
features to a certain degree, which means that features in a
fuzzy tree are fuzzy clusters. Moreover, a fuzzy feature tree
imposes no restrictions on features or relationships between
them, even when this would be invalid in traditional feature
trees. For instance, multiple features can contain the same
requirements and it is possible for a feature to have multiple
parents.

In Figure 3, a fuzzy feature tree is depicted that is a mod-
ification of the diagram in Figure 2. In this picture, the re-

Figure 3. A Fuzzy Feature Diagram

quirement R3 initially was identified as being ambiguous
and two interpretations were been identified, say R3.1 and
R3.2, with a respective relevancy degree of x and y. In the
fuzzy clustering that results, there are two overlapping re-
quirement clusters, {R1, x/R3} and {R2, y/R3}, in which
R3 has differing degrees of membership. This fuzzy feature
tree now describes the best clustering that could be achieved
in the feature tree based on the ambiguous information that
was provided. Note that as a result of including these clus-
ters, other features have multiple parent features.

As a fuzzy feature diagram is a generalization of fea-
ture diagrams, it essentially describes multiple feature dia-
grams simultaneously. By removing elements, such as fea-
tures with overlapping requirements, a fuzzy feature dia-
gram can be transformed into a traditional feature diagram.
Depending on how the membership degrees are used during
this defuzzification step, a number of alternative feature di-
agrams can be proposed to the software architect. Ideally,
however, a fuzzy feature diagram is maintained throughout
SPL development so more detailed information can arrive
at a later stage to resolve the imperfection. Also, by extend-
ing approaches that operate on traditional feature diagrams,
such as the variability/crosscutting analysis of Arborcraft,
they can assess the risks that come with specific decisions
by considering the imperfection described in fuzzy feature
diagrams.

4.5 Application to Arborcraft

When this proposal is applied to the Arborcraft ap-
proach, this results in the picture of Figure 4. The new
elements in the picture when compared to Figure 1 are in-
dicated in grey. In step (I), first the ambiguous statements
are modelled as fuzzy requirements. The resulting require-
ments are then clustered with the standard techniques from
Arborcraft (steps II and III). The feature tree that results is
restructured to a fuzzy feature tree in step IV. If required,
in step VI the fuzzy feature tree is defuzzified to a num-
ber of crisp feature trees. The software architect can then
select the most appropriate alternative. The refactorings of
Arborcraft with respect to variability and cross-cutting (step
V) can be applied to both fuzzy feature tree as well as the

VaMoS'09

98

Figure 4. Arborcraft with support for ambiguous requirements

defuzzified, crisp feature trees. Naturally, to handle fuzzy
feature trees the refactoring mechanisms would need to be
enhanced.

5 Discussion

5.1 Discussion of the Approach

In the previous section, we have sketched an approach
for coping with imperfect information during the definition
of feature diagrams. Nonetheless, this approach leaves a
number of questions unanswered. In this section we exam-
ine some of these questions.

5.1.1 Maintaining Imperfect Information during SPL
Development

One of the key properties of the proposed approach is the
possibility to maintain imperfection during multiple stages
of SPL development. With this property, software archi-
tects do not need to make unjustifiable assumptions which
can hinder development at later stages. However, the inclu-
sion of alternative interpretations creates extra overhead and
introduces new model elements that need to be considered.

However, the benefit of maintaining imperfect informa-
tion during SPL development is two-fold. First, the pres-
ence of imperfect information poses a danger to effective
software development. If the SPL architecture is built based
on imperfect information, it is likely that at later stages
some sort of redesign will be required. By including al-
ternative interpretations and considering the influence of
imperfection, the design becomes more resilient to such
changes. In essence, design becomes a defensive activity as
a number of likely scenarios are already considered. More-
over, the modelled imperfection offers the opportunity to
examine risks that come with design decisions.

The second benefit lies in the fact that insufficient infor-
mation might not stay insufficient indefinitely. A traditional
approach forces the architect to make explicit assumptions
that at a later stage can turn out to be correct or false. With
the support for imperfect information, the architect does not
have to commit to a single assumption. Rather, the design

will consider and support a number of alternative assump-
tions throughout the design stages. This creates a larger
window of opportunity for the imperfection to be resolved
and it will require considerably less refactoring if the design
already contains what turns out to be the correct informa-
tion.

Nonetheless, the concept of maintaining imperfect infor-
mation introduces a trade-off of effort during the develop-
ment process. By including all kinds of potential interpre-
tations and design alternatives, software architects can be
faced with a considerable increase in effort. It is there-
fore vital that the software architect can control and man-
age the extra effort that is created. This can be achieved by,
for instance, focusing only on the most relevant interpreta-
tions and removing excess information whenever possible.
To perform this kind of operations, support for (partial) re-
moval of imperfect information from design is required.

5.1.2 Identifying Imperfect Information

One of the most important problems to be solved is the iden-
tification of imperfect information in textual requirement
specifications. More specifically, the sufficiency of avail-
able information needs to be determined for the design step
in which it will be used. As the reason for information to be
insufficient is defined by this context, imperfection not only
needs to be identified, but also the nature and consequences
of its insufficiency.

NLP techniques can assist in identifying imperfect in-
formation in textual requirement specifications. Specific
approaches have been proposed for the identification and
management of imperfection in requirement specifications,
such as [9, 11]. With the addition of specific lexicons and
vocabulary for typical imperfection in software specifica-
tions, semantic analysis approaches can be extended to aid
in this goal.

Ideally, at the moment imperfection is identified the
stakeholders are consulted and additional information is ac-
quired to resolve the situation. However, as we identified in
Section 2, this is not always possible due to a lack of knowl-
edge or insight. In this case, stakeholders can be consulted
to describe the actual imperfection. For example, in our ex-
tension for requirements clustering we propose alternative

VaMoS'09

99

interpretations to be given for ambiguous statements. While
NLP cannot derive this kind of information, the automatic
identification of potential ambiguities provides a valuable
first step.

5.1.3 Removing Imperfection Models from SPL Devel-
opment

As mentioned in the previous section, it can be desired at
given points during development to remove imperfection
models. This can for instance be the case when subsequent
stages no longer support imperfect information or when the
additional effort for maintaining it are no longer feasible.
This warrants the question how these models can be re-
moved from the design when the need arises.

As the proposed extensions, such as the fuzzy feature di-
agram, essentially describe a number of traditional models
using a single generalized model, the removal of imperfec-
tion corresponds to determining the best traditional model
from the generalized model. The numerical information
(such as the membership values of clustered requirements)
can be used for this purpose. By identifying the traditional,
crisp model that best fits the numerical information and the
restrictions the model should adhere to, the imperfection
can be removed. This is in essence an optimization prob-
lem where all traditional models that can be derived from a
generalized model are ranked and the best one selected.

5.1.4 How do Imperfection Models affect existing Ap-
proaches?

The introduction of fuzzy feature trees in this paper, and
imperfection models in general, has a direct impact on all
approaches to operate directly on traditional feature trees.
As these approaches do not consider the typical properties
of fuzzy feature trees, they cannot be applied in the same
manner during SPL development.

This can be resolved in two possible ways: first of all,
the imperfection can be removed at the moment a design
activity is to be undertaken that does not support imperfec-
tion models. This can be done by the earlier mentioned
defuzzification techniques and the selection of one of the
resulting alternative feature trees. However, as identified in
Section 5.1.1, it is desirable to maintain unresolved ambi-
guity as long as possible. Therefore, the second way is to
extend these approaches to support fuzzy feature trees. Nat-
urally, the effort required for realising such support must be
aligned with the benefits during development.

5.2 A Research Agenda for Supporting
Imperfect Information

In Section 2, we have identified that imperfect infor-
mation in textual requirement specifications can severely

hinder variability/commonality analysis. And with the
proposal of fuzzy similarity values, overlapping clustering
and fuzzy feature trees, we have sketched a first direction
for imperfection support in Arborcraft. In this section, we
define a research agenda with key problems of imperfect
information in feature tree derivation and the general
direction on how these problems should be addressed.

A formalized procedure for deriving feature diagrams
One of the most important problems is a complete under-
standing of the process that turns textual requirement spec-
ifications into actual feature diagrams. At the moment, this
step still relies considerably on the intuition, knowledge and
experience of the software architects. To understand how
imperfect information influences the decisions that define
the feature tree, they need to be understood in an unam-
biguous and uniform manner.

With a formal model of the derivation of feature trees,
the way information is used will become well-understood.
Moreover, it becomes possible to analyse the problems
that imperfect information causes during this process.
NLP-baed approaches such as Arborcraft actually define a
(semi-)formal approach for going from textual requirement
specifications to feature diagrams. The proposed approach
in this article utilizes this by extending its capabilities to
support imperfection.

A taxonomy of types of imperfect information
A second important problem to be solved is understanding
the nature of the imperfection that can occur in require-
ment specifications. Many different types of imperfection
exist, such as conflict, ambiguity and vagueness, and each
of them influences the usability of the information in a dif-
ferent manner. By having a standardized categorization of
imperfection types, potentially hazardous elements in spec-
ifications can be identified and its impact assessed.

In particular for NLP-based approaches, the definition of
an imperfection taxonomy would be very useful. As many
NLP approaches utilize a semantic lexicon (e.g. EA-Miner
uses variability lexicons), an imperfection lexicon based
on this taxonomy can aid in the automatic identification
of imperfect information. Moreover, a well-defined
terminology will aid in communicating about imperfect
information and creating awareness about this phenomenon.

Modelling and reasoning support for imperfection
The core element of any approach for dealing with imper-
fect information is the ability to model the imperfection and
reason with this model in subsequent steps. By capturing
the identified imperfection with models such as probability
theory and fuzzy set theory, the nature and risk of such in-
formation can be quantified. By extending the subsequent
design steps to consider these models, the influence of the

VaMoS'09

100

imperfection can be considered during decision making ac-
tivities.

Resolving this problem requires the first two problems
of this research agenda to be resolved. Formalizations
need to be extended with techniques from probability and
fuzzy set theory to support reasoning with models for
imperfection. Moreover, only when the type and nature
of the imperfection is known is it possible to identify the
appropriate model to quantify it accurately.

Removal of imperfection models from development
The final problem is the systematic removal of imperfection
models from development. The first three research prob-
lems are targeted at introducing models for imperfection.
Conversely, at particular stages and situations it can be re-
quired to remove these models because of new insights or
because of a lack of budget to maintain all the extra infor-
mation.

The removal requires an approach that can determine
which elements of the imperfection models are no longer
relevant. Moreover, it can also require the selection of the
most relevant interpretations that have been included. As
identified in Section 5.1.3, such removal activities are in
essence optimization problems so the body of knowledge
in optimization theory offers a promising starting point.

6 Related Work

This paper focuses on the problem of supporting imper-
fect information in feature derivation and relates to the areas
of requirements engineering, SPL development and imper-
fection modelling and support for feature diagrams. In this
section, we give a short overview of related work in these
fields.

Extensions to feature diagrams based for imperfect in-
formation have been proposed before. In [18], features in
feature diagrams are attributed with fuzzy weights that de-
scribe the preference of specific customers. The weights
subsequently are used by a fuzzy logic-based expert sys-
tem that can determine typical product configurations for
specific customer profiles. The approach described in [16]
extends on this approach by introducing fuzzy probabilis-
tic descriptions of market conditions that can influence the
expert system. In [7], soft constraints are introduced that
specify the conditional probability that feature will be part
of a configuration when another feature already is part of
it. This information can then be used to identify product
parts that must be supported by a particular platform or to
understand how these products utilize a particular platform.

These approaches capture a particular type of imperfec-
tion when dealing with feature diagrams. However, the goal
of these approaches is distinctly different from the prob-
lem we have identified in this article. The imperfection that

these approaches support originates from an uncertain pref-
erence of customers for particular configurations. The im-
perfection support in our approach addresses unresolvable
imperfection in requirement specifications. Moreover, our
approach is aimed at supporting the design steps that lead
up to an actual feature diagram.

In this work, a fuzzy extension is proposed for deriving
feature diagrams from textual requirement specifications. In
[4], an approach is proposed that derives feature trees by
performing clustering of textual requirements definitions.
Our approach is a generic extension that can be integrated
in this and other similar approaches, like Arborcraft. Imper-
fection support for feature tree extraction, to the best of our
knowledge, has not been proposed before.

The influence of imperfect information on feature dia-
grams is well recognized [18, 16]. Kamsties identifies in [9]
that ambiguity in requirement specifications needs to be un-
derstood before any subsequent design can be undertaken.
With support for feature tree definition being largely heuris-
tic [13, 6], systematic support for imperfect information is
all but completely absent. Our approach defines a first step
by proposing models and design steps to support these mod-
els.

7 Conclusions

In this article, we have taken a first step towards support-
ing imperfect information in the definition of feature trees.
We have identified that the effectiveness of approaches that
derive feature trees from textual requirement specifications
can be severely compromised by imperfect information.
And as imperfection is naturally part of requirements that
are specified in natural language, its influence on such ap-
proaches can not be ignored. We established that the main
cause is that most approaches require perfect information
for the definition of an accurate feature trees. As a result,
any imperfections need to be resolved even when specific
assumptions can not (yet) be justified.

To illustrate the impact of imperfect information, we ex-
plored approaches that derive feature trees from require-
ments specifications by clustering related requirements. As
the clustering mechanisms used in these approaches do not
explicitly consider imperfection, the clustering that results
is influenced by vagueness and ambiguity in natural lan-
guage. Nonetheless, subsequent stages use the feature tree
that results as input while assuming these results to be ac-
curate.

To address these problems, we have proposed an ap-
proach that captures ambiguity in requirement descriptions
using techniques from fuzzy set theory. In particular, we
proposed the consideration of multiple interpretations when
ambiguity can not be resolved, fuzzy clusters to extend the
clustering of requirements and a fuzzy extension for feature

VaMoS'09

101

diagrams that captures the imperfection. These proposals
have been generalized to form a research agenda for imper-
fection support in feature diagram derivation.

As future work, we want to formalise the steps for the
derivation of fuzzy feature trees from ambiguous require-
ments. Also, we want to integrate with existing approaches
that can identify imperfect information using natural lan-
guage processing and we want to extend the support for
refactorings of feature diagrams. When this is completed,
we plan to implement the approach as part of Arborcraft
and evaluate it with an industrial case study.

8 Acknowledgements

This work is sponsored by the European Union as part
of the AMPLE project (IST-33710) and the DISCS project
(IEF-221280).

References

[1] M. Alvarez, U. Kulesza, N. Weston, J. Araujo, V. Amaral,
A. Moreira, A. Rashid, and M. Jaeger. A metamodel for as-
pectual requirements modelling and composition. Technical
report, AMPLE project deliverable D1.3, 2008.

[2] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An ex-
ploratory study of information retrieval techniques in do-
main analysis. In SPLC ’08: Proceedings of the 2008 12th
International Software Product Line Conference, pages 67–
76, Washington, DC, USA, 2008. IEEE Computer Society.

[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated
reasoning on feature models. In Proceedings of the 17th
Conference on Advanced Information Systems Engineering,
volume 3520 of Lecture Notes in Computer Science, pages
491–503. Springer-Berlin, 2005.

[4] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to
constructing feature models based on requirements cluster-
ing. Proceedings of the 13th IEEE International Conference
on Requirements Engineering, pages 31–40, 2005.

[5] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a
feature : A requirements engineering perspective. In LNCS
4961, pages 16–30. Springer-Verlag, 2008.

[6] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[7] K. Czarnecki, S. She, and A. Wasowski. Sample spaces and
feature models: There and back again. Software Product
Line Conference, International, 0:22–31, 2008.

[8] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating
feature modeling with the rseb. In ICSR ’98: Proceed-
ings of the 5th International Conference on Software Reuse,
page 76, Washington, DC, USA, 1998. IEEE Computer So-
ciety.

[9] E. Kamsties. Understanding ambiguity in requirements en-
gineering. In A. Aurums and C. Wohlin, editors, Engineer-
ing and Managing Software Requirements, pages 245–266.
Springer-Verlag, 2005.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon Univer-
sity Software Engineering Institute, November 1990. Report
CMU/SEI-90-TR-21.

[11] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry. Re-
quirements for tools for ambiguity identification and mea-
surement in natural language requirements specifications.
Requirements Engineering, 13(3):207–239, 2008.

[12] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic, Theory
and Applications. Prentice Hall, 1995. Standard Reference
for Fuzzy Sets and Fuzzy Logic ISBN: 0-13-101171-5.

[13] K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of
feature modeling for product line software engineering. In
ICSR-7: Proceedings of the 7th International Conference on
Software Reuse, pages 62–77, London, UK, 2002. Springer-
Verlag.

[14] L. Mich and P. N. Inverardi. Requirements analysis using
linguistic tools: Results of an on-line survey. In 11th IEEE
International Conference and Workshop on the Engineering
of Computer-Based Systems, pages 323–328, 2003.

[15] J. Noppen, P. van den Broek, and M. Aksit. Imperfect re-
quirements in software development. In Requirements En-
gineering: Foundation for Software Quality (REFSQ) 2007,
number 4542 in LNCS, pages 247–261. Springer-Verlag,
2007.

[16] A. Pieczynski, S. Robak, and A. Walaszek-Babiszewska.
Features with fuzzy probability. Engineering of Computer-
Based Systems, IEEE International Conference on the,
0:323, 2004.

[17] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[18] S. Robak and A. Pieczynski. Application of fuzzy weighted
feature diagrams to model variability in software fami-
lies. Artificial Intelligence and Soft Computing, LNCS
3070/2004:370–375, 2004.

[19] P.-Y. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps.
Generic semantics of feature diagrams. Computer Networks,
51:456–479, 2007.

[20] A. Stone and P. Sawyer. Identifying tacit knowledge-based
requirements. IEE Proceedings–Software, 153(6):211–218,
2006.

VaMoS'09

102

Towards End-User Development of Smart Homes by means of Variability
Engineering

Francisca Pérez, Carlos Cetina, Pedro Valderas, Joan Fons
Centro de Investigación en Métodos de Producción de Software

Universidad Politécnica de Valencia
Camino de Vera, s/n, 46022 Valencia, Spain

{mperez, ccetina, pvalderas, jfons}@pros.upv.es

Abstract

End users and professional developers possess distinct
types of knowledge, end-users know the problem and their
needs and developers know the technology to solve the
problem. Therefore, it is very important that end-users
and designers participate cooperatively. In this paper, we
present a design method for designing the adaptation of
smart home systems where end-users and technical design-
ers participate cooperatively by means of Variability Enge-
neering. We introduce Feature Modelling as the underlying
technique to enable this cooperation. The paper also shows
how to apply two classic end-user techniques within the de-
sign method.

1 Introduction

In the past few decades, many research initiatives that
are interested in realizing the vision of ubiquitous comput-
ing have emerged [26]. These efforts seek to understand
how interactive technology can be built into the very fabric
of our everyday environment [6]. A growing focus has been
placed on transforming the homes we live in into ubiquitous
computing environments. In order to achieve the promises
of ubiquitous computing, smart homes must improve ev-
eryday life activities without losing user acceptance of the
system [25]. End-user development copes with this chal-
lenge by incorporating user personalization from the very
beginning [1, 2].

Smart Homes are complex systems, not only because
many different devices are involved, but also because users
require these devices to be (1) seamlessly integrated and
(2) adapted to their particular needs. Previous studies have
highlighted that people continually reconfigure domestic
spaces as well as the technologies involved in order to sup-
port their activities [24, 23]. The use of end-user develop-

ment techniques can provide us with several benefits in this
aspect. For instance, it provides users with control over an
unpredictable combination of interoperating devices [22],
and also allows users to customize services at their best con-
venience [2]. Hence, end-user development pursues a nat-
ural alignment between end-user expectations and system
capabilities.

It would seem that a complex and adaptive system as
a smart home would require sophisticated programming
which only skilled software engineers could produce. How-
ever, a system properly structured for self-configuring and
reactivity to the environment provides exactly the correct
vocabulary and control points for enabling end-users to
extend and configure the system. We believe that we
can contribute to enabling end-user development using the
Scope, Commonality, and Variability analysis [10].

In this paper, we present a design method for design-
ing the adaptation of smart home systems where end-users
and technical designers participate cooperatively. End-users
contribute with their domain knowledge, while designers
provide their technical background to preserve the quality of
the system. We introduce Feature modelling as the underly-
ing technique to enable this cooperation. This technique not
only provides a common terminology to end-users and de-
signers, but also allows for stage configuration through the
stepwise specialization of feature models. This is important
because both end-users and designers modify system vari-
ability at different stages in a cooperative design method.
Finally, we show how to apply classic end-user techniques
within the proposed design method.

The rest of this paper is structured in the following
way: Section 2 analyzes how the system evolves in order
to properly fit end-user needs. Section 3 introduces a de-
sign method that allows designers to describe adaptation of
smart home systems in cooperation with end-users. Sec-
tion 4 applies classic end-user techniques in different stages
within our method. Finally, section 5 concludes the paper.

VaMoS'09

103

2 Adaptation in smart home systems and
end-users

Smart Home environments are abundant of physical de-
vices such as sensors (i.e. presence or light intensity), ac-
tuators (i.e. lamp or alarm) and multimedia (i.e. digiframe
or set-top box). The functionality of these devices is aug-
mented by high level Services. These Services coordi-
nate the interaction between devices to accomplish specific
tasks. For instance, an Automated Illumination service de-
tects presence in a room. To achieve this goal, the Auto-
mated Illumination service coordinates lights and presence
detectors. In relation with this, by configuration of a sys-
tem we mean the specific set of services and devices that
system must support to fit user needs. By adaptation we
mean a change from one configuration to another to satisfy
a change in user needs.

Thus, we start by analyzing the system adaptation level
that is needed to allow the system to properly fit end-user
needs. This analysis is based on the following ideas:

a. Adaptation in smart homes is driven by a cyclical influ-
ence between user needs and system capabilities [8].

b. Adaptation attempts to avoid the mismatch between
user needs and system capabilities [14].

c. The adaptation of a system is limited by a point at
which so many changes have been performed that we
are really talking about another system [17].

According to these ideas, Figure 1 represents the re-
quired adaptation level according to the way in which user
needs change. The way in which user needs change is repre-
sented by a monotonically increasing function f(t) because
the more the user influences the system, the more the system
influences the user (in accordance with a). The intersection
p represents the point at which a new system has to be de-
signed because the needs are out of scope (in accordance
with c).

We have divided the life cycle of an adaptive system into
three zones (in accordance with b):

1. The Inception Phase. The aim of this phase is
to minimize the mismatch between user needs and
capabilities. User-centered techniques (sketching or
storyboarding) and end-user programming techniques
(metaphors or teaching by example) can be used to
incorporate the customization of the system from the
very beginning. However, we have noticed that there
are important factors that are not known until the sys-
tem is used. For example, during the development of
a pervasive meeting room [21], the system was fixed
with an initial setting but when end-users made use of
the system, they constantly change the configuration

1 2 3

Maximum System Adaptation Level

Initial System Capabilities

E
n

d
-U

se
r

N
e
e
d

s

time

f(t)

p

d

r

Figure 1. Evolution of end-user needs

because the initial configuration did not satisfy their
needs or their needs changed.

The distance d represents the mismatch between end-
user needs and initial system capabilities. In this
phase, the goal of design methods is to minimize this
mismatch. To achieve this goal, design methods can
allow for the introduction of some techniques for the
end-user to facilitate to specify their needs more accu-
rately.

2. The Adaptation Phase. In this phase, adaptations are
performed to fit the evolution of end-user needs. These
adaptations can be related to environment devices (up-
grades or new devices) or with system services (modi-
fications or new services).

The distance r represents the adaptation range of the
system. The goal of design methods is to maximize
this adaptation range. To achieve this objective, de-
signers should increase the amount of system variation
points.

In this phase, it would be advisable to introduce some
techniques for the end-user to upgrade or reconfigure
the system at run-time.

3. The Transition Phase. This phase starts when the
maximum adaptation level has been reached and new
needs surpass the system scope.

The intersection p represents the point from which
the system can no longer adapt itself to new end-user
needs. The purpose of design methods is to delay
this point in time. To achieve this objective, designers
should adjust the system scope to the end-user needs
and provide mechanisms to properly support varia-
tions.

There are no design techniques involved in this phase,
since the designers must develop a new system.

In the next section, we present a method for designing
adaptation in smart home systems.

VaMoS'09

104

3 A model-based method for designing adap-
tation in smart homes

To define a method to design adaptation in smart homes,
we base on the following ideas:

1. End-users participate in the design process [18].

2. System designers cooperate with end-users [13].

3. Design encourages customization [26].

To support these ideas we propose a method based on
a feature model. In the next two subsections, we present
this feature model and how it is used to describe system
adaptation with end-users.

3.1 A feature model for Smart Homes

Many people understand software systems in terms of
application features, which are the first recognizable ab-
stractions that characterizes specific systems from the end-
user perspective [16]. The feature modeling technique [11]
(see Figure 2) is widely used to describe a system config-
uration and its variants in terms of features. A feature is
an increment in system functionality. The features are hi-
erarchically linked in a tree-like structure through variabil-
ity relationships and are optionally connected by cross-tree
constraints. In detail, there are four relationships related to
variability concepts on which we are focusing:

• Optional. A feature is optional when it can be selected
or not whenever its parent feature is selected. Graphi-
cally it is represented with a small white circle on top
of the feature.

• Mandatory. A feature is mandatory when it must be
selected whenever its parent feature is selected. Graph-
ically it is represented with a small black circle on top
of the feature.

• Or-relationship. A set of child features have an or-
relationship with their parent feature when one or more
child features can be selected simultaneously. Graphi-
cally it is represented with a black triangle.

• Alternative. A set of child features have an alternative
relationship with their parent feature when only one
feature can be selected simultaneously. Graphically it
is represented with a white triangle.

Additionally, the feature modeling technique incorpo-
rates two relationships to express constraints:

Smart Home

Presence Simulation Security

Siren

Automated Illumination

Presence Detection

Volumetric 360
degree Detector

In home Detection Silent
Alarm

Infrared 160 degree
Detector

R
eq

ui
re

s

Visual
Alarm

Variation PointInitial Configuration

Outside
Detector

Perimeter Detection

Alarm

Lamp Gradual
Lamp

Figure 2. Smart home feature model

• Requires. A relationship A Requires B means that
when A is selected in a system configuration, B is also
selected. Graphically it is represented with a dashed
arrow.

• Excludes. A relationship A Excludes B means that
when A is selected in a system configuration, B can-
not be selected. Graphically it is represented with a
dashed double-headed arrow.

We also include Variation Points in the feature model.
By variation point we mean a feature that has not been se-
lected for the current configuration but can be used to define
further configurations. The features filled in gray are the se-
lected features of the smart home configuration, while the
white features represent variation points.

An example of a feature model is shown in Figure 2. The
feature model describes the smart home with an Automated
Illumination and a Security service. This security service
relies on presence detection (inside the home) and a silent
alarm. Potentially, the system can be upgraded with more
services (Perimeter Detection and Presence Simulation) or
with more devices (a Siren, a Visual Alarm, a Gradual Lamp
or a Volumetric Detector). Note how these potential updates
are represented by Variation Points.

For instance, Security Service represented in Figure 2
initially uses a Silent Alarm device. If the system is up-
graded with a Siren device the system will also use Siren in
the Security Service since the feature Siren is modeled in
the Smart Home Feature Model as a Variation Point.

VaMoS'09

105

Defining
System Scope

Defining initial
configuration

Designer End-User

All needs within
the scope

Out of scope
All needs
within the

scope

Out of scope
A B D

EC

Design through Scope Design through Use

F

Figure 3. The design method for adaptive smart homes

3.2 A design method for design adapata-
tive smart homes

Our design method is based on our experience with de-
veloping smart homes [20, 21, 19]. Figure 3 graphically
presents the steps (arrows) and the decisions (diamonds
with dashed arrows) of the method. We propose a design
process that is divided in two stages: (1) designing through
the scope and (2) designing through the use. Both stages
are performed by using the feature model presented in the
previous section.

• Design through Scope. The first stage involves steps
A, B, and C (see Figure 3), and its goal is to fit the
system scope to the end-user needs. The actors of
this stage are the system designer (technological back-
ground) and the end-user (domain knowledge). Both
cooperate in the design of the system as follows:

1. Step A: Defining System Scope. The designers
propose an initial design to a group of target end-
users in order to discover where the perceived
and realistic needs align. Setting the proper scope
of the system is a fundamental step in achieving
user acceptance. The scope determines the do-
main of the smart home (elderly care, kids as-
sistance, security...). The designers set the scope
by identifying all the possible features and their
relationships in a feature model (see the top left
picture of Figure 4).

2. Step B: Defining Initial Configuration.The
end-users customize their smart homes from the
initial configuration. A configuration is repre-

sented as a valid selection of features in the fea-
ture model and features which are not selected
constitute the variation points (see the top right
picture of Figure 4).

3. Step C: Out of scope.The end-users identify
needs for which no element exists. Afterwards,
this feedback guides designers to focus the sys-
tem scope on end-user needs by identifying the
desired configuration and new variation points
(see the bottom right picture of Figure 4).

This stage is performed again until all needs have been
addressed. Rather than forcing the designers to specu-
late on the system scope, we have found that presenting
users with designs that surpass their needs helps to un-
cover the boundaries of the scope. It is applied in the
Inception Phase that is described in Section 2. The aim
of this stage is to avoid the initial mismatch between
user needs and system capabilities and also to reduce
the rigidity effect [12] of traditional end-user program-
ming. This effect is introduced by non-cooperative de-
sign methods and implies that end-user decisions are
restricted by a priori specifications.

• Design through Use. The second stage involves steps
D, E and F (see Figure 3). Its goal is to allow end-users
to reconfigure the system in run-time. The actors of
this stage are end-users (with their possible new needs)
and the system (which must adapt itself to these end-
user needs). The variation points identified in the pre-
vious stage enables end-users to redesign system per-
formance to match their needs at run-time.The aim of
each step is:

VaMoS'09

106

4. Step D-E: Evolution of end-user needs and
System reconfiguration. The adaptation is per-
formed as a transition between sets of features
when end-user needs change. Then, the smart
home reconfigures itself from a valid selection of
features to another valid selection (see the bottom
left picture of Figure 4).

5. Step F: Out of scope. Users have new needs
that are not considered in the scope of the sys-
tem (represented by the feature model). Incor-
porating new features to a feature model implies
modifying its scope. These modifications imply
restarting the design method (see the bottom right
picture of Figure 4).

This stage is applied at the Adaptation Phase that is de-
scribed in Section 2. The aim of this stage is to enable
end-users to take control of the system performance,
which has been identified as an important design prin-
ciple [12].

To define these stages, we use the structure presented in the
work by Stewart Brand [8], who refers to the successive
cyclical influence between users and buildings. He stated:

“First we shape our building, then they shape us,
then we shape them again ad infinitum. Function
reforms form, perpetually.”

The method presented in this paper describes which steps
have to be taken. The following section presents some tech-
niques that support end-users in the performance of steps B
and D.

4 End-user techniques

End-user design techniques have been adopted from hu-
man computer interaction to ubiquitous computing. These
techniques encourage and enable end-users to partici-
pate in the creation of software. End-users are intro-
duced to the development process by means of appropri-
ate metaphors, such as the jigsaw metaphor [2], the media
cubes metaphor [15], the butler metaphor [1] or the fridge
magnet metaphor [4]. In the context of this work, these
techniques can be used to improve the design of smart home
systems adapted to end-user needs. However, they do not
address the adaptation of the system when deployed and
end-users change their needs. To solve this problem, there
are other approaches such as the End-User Sensor Installa-
tion Technique [7], Programming by Demonstration [3] or
Pervasive Interactive Programming [9].

In this work, we use the Jigsaw metaphor and Program-
ming by demonstration techniques. The next two subsec-
tions describe these techniques and how they can be inte-
grated in our cooperative design method. In particular, we

A Defining System
Scope

B Defining initial
configuration

D Evolution -
Reconfiguration

C Out of scope

FE

Figure 4. Steps of the design method

show how these techniques can exploit feature models and
how they can be used to support Steps B and D where the
actor is the end-user.

4.1 Applying Jisgaw technique in Step B

With the aim to allow end-users to define the ini-
tial configuration in Step B, we have chosen the jigsaw
metaphor [2]. The “jigsaw pieces” metaphor is based on
the familiarity evoked by the notion and the intuitive sug-
gestion of assembly by connecting pieces together. Essen-
tially, it allows users to take varibility decisions through a
series of left-to-right couplings of pieces. Constraining con-
nections in a left to right fashion also provides users with the
sense of a pipeline of information flow.

We can use the jigsaw metaphor to allow end-users to
describe the initial configuration. To achieve this, each fea-
ture defined in the feature model is presented to end-users
as jisgaw pieces. End-users must join these jigsaw pieces
to achieve their initial configuration. End-users create a line
of pieces for each desired service included in their initial
configuration. Compatibility is a must when joining jigsaw
pieces. Compatible and non-compatible pieces are defined
by the relationships in the feature model. Two pieces are
compatible if their associated features are related by means
of a relationship defined in the Feature Model (Optional,
Mandatory, Or-relationship or Alternative). In Figure 5, we
illustrate the initial state of the jigsaw pieces for the fea-
ture model previosly modeled by the designer in Step A

VaMoS'09

107

Smart
Home

Lamp
Volumetric
360 degree
Detector

Infrared
160 degree
Detector

Outside
Detector

AlarmPresence
Detection

Jigsaw

pieces

Perimeter
Detection

In Home
Detection SirenSilent

Alarm

Visual
Alarm

Security Automated
Illumination

Presence
Simulation

Figure 5. Defining the initial configuration

(see Figure 2). The root piece is filled in black with a gray
frame, the compatible pieces are filled in black and the non-
compatible pieces are filled in gray. When a jigsaw piece is
added, non-compatible pieces are disabled and shadowed,
indicating which pieces are compatible.

Therefore, to define an initial configuration end-users
must take the following steps:

1. Select the root piece. From this feature end-users can
define all their initial configuration services.

2. Add available pieces to the last piece selected. If end-
users select a leaf piece a service will be configured.

3. Repeat steps 1 and 2 until all pieces have been selected
or repeat until all the services needed are configured.

When the services have been configured, end-users will
have a line of puzzle for each service initiated in the sys-
tem from the root to the leaves. The services which are not
initialized will not be available in the system.

According to the feature model and the initial configu-
ration represented in Figure 2, end-users can define three
initial services: Presence Detection, Alarm and Automated
Illumination. In the end, end-user will attain a line of puzzle
for each service (see Figure 6).

4.2 Applying Programming by Demon-
stration technique in Step D

With the aim to allow end-users customize or upgrade
the system at run-time in Step D, we have chosen the Pro-
gramming by Demonstration (PbD) technique [3]. PbD
allows “programming” by interacting with the devices in

Lamp

Infrared
160 degree
Detector

In Home
DetectionSecurity

Smart Home

Presence Simulation Security

Siren

Automated Illumination

Presence Detection

Volumetric 360
degree Detector

In home Detection Silent
Alarm

Infrared 160 degree
Detector

R
eq

ui
re

s

Visual
Alarm

Outside
Detector

Perimeter Detection

Alarm

Lamp Gradual
Lamp

Variation PointInitial Configuration

Smart
Home

Presence
Detection

The initial configuration

Security Silent
Alarm

Smart
Home Alarm

Automated
Illumination

Smart
Home

Gradual
Lamp

Figure 6. An example of the initial configura-
tion

the environment to show an example of desired functional-
ity. The main advantage of PbD is to allow customizing or
upgrading functionality at run-time by end-users who had
no experience in developing applications or using complex
interfaces. PbD consist of capturing the events which are
produced by interacting with the system. Next the system
analizes these events.

The way in which PbD can be used in Step D of our
method goes as follows. End-users can customize the ini-
tial configuration interacting at run-time with devices within
a smart home. The communication between end-users and
the smart home is via an eventing mechanism. When end-
users want to customize a service, they must set the system
in Record mode to reconfigure this service. Record mode
saves the events which are produced when end-users inter-
act with the devices. When end-users stop interacting with
the devices they will then disable the record mode. After the
record mode is disabled, the system analyses all the saved
events and detects which ones are associated with features
that belong to the service being reconfigured. If these as-
sociations are compatible to the specific service then, the
system reconfigures the specific service.

Figure 7 shows an example where the Automated Illu-
mination service is customized. The Automated Illumina-
tion service is initially configured to use the Lamp, as we
can see in the feature model shown to the left of Figure 7.

VaMoS'09

108

Smart Home

Automated Illumination

Lamp Gradual
Lamp

Smart Home

Automated Illumination

Lamp Gradual
Lamp

Initial Configuration New Configuration

End-User switch on
the Gradual lamp

Record
mode

Checks
Feature
Model

Figure 7. Customizing services at run-time

End-users want to customize the Automated Illumination
service to switch on the gradual light device rather than the
lamp device. To customize this service, end-users must en-
able the Record mode for this service. Then, end-users go
to the sitting room and switch on the gradual lamp. After
that, end-users disable the Record mode. When the record
mode is disabled, the system checks each saved event. In
this example, the system has two saved events: (1) Pres-
ence Detection service activated (because the end-user goes
into the sitting room) and (2) Gradual lamp is enabled. For
each event, the system checks the feature model to search
any compatible feature of the selected service. In this case,
the event compatible with Automated Illumination service
is the activation of the Gradual Lamp. Afterwards, the Au-
tomated Illumination service is configured to use the Grad-
ual Lamp, as we can see to the right of Figure 7.

Therefore, end-users can customize or add services in
run-time by means of interacting with devices to show the
system their desired functionality of a specific service. If
the shown funcionality has been modelled in the feature
model as having compatible features then, the specific ser-
vice will be modified and the system will be reconfigured.

5 Conclusion and future work

End-users and professional developers actually possess
distinct types of knowledge. End-users are the “owners” of
the problem and developers are the “owners” of the tech-
nology to solve the problem. End-users do not understand
software developers jargon and developers often do not un-
derstand end-user jargon [5]. Thus, in this paper we have
presented a method which allows end-users to cooperate in
the design process of smart home system adaptation and
adapt the system to their needs at run-time. We have in-
troduced Feature Modelling as the underlying technique to
enable this cooperation. In the design method that we have
presented, we have identified two stages: Design through
Scope and Design through Use. In Design through Scope, a
technical designer proposes an initial feature model setting
the proper scope of the system in achieving user acceptance.
End-users customize the initial configuration and identify
needs for which no elements exists. This stage is performed
until all needs are supported. In Design through Use, end-

users can upgrade or customize their system at run-time un-
til the system is out of scope needs. Finally, we have shown
how two classic end-user techniques can be applied in the
context of our method to: (1) allow end-users to cooperate
with technical designers and (2) customize or upgrade their
system in run-time.

As a future work, we are going to study more end-user
techniques to simplify the design system for end-user and
find other techniques to be applied with our method. Fur-
thermore, we are going to test more end-user techniques to
find the best adaptation in our method. We are also working
on the development of editors to apply end-user techniques
with our method.

References

[1] End user empowerment in human centered pervasive com-
puting, 2002.

[2] “Playing with the bits”: User-configuration of ubiquitous
domestic environments, 2003.

[3] a CAPpella: programming by demonstration of context-
aware applications, New York, NY, USA, 2004. ACM.

[4] CAMP: A magnetic poetry interface for end-user program-
ming of capture applications for the home, 2004.

[5] End users as unwitting software developers, New York, NY,
USA, 2008. ACM.

[6] G. D. Abowd and E. D. Mynatt. Charting past, present,
and future research in ubiquitous computing. ACM Trans.
Comput.-Hum. Interact., 7(1):29–58, 2000.

[7] C. Beckmann, S. Consolvo, and A. LaMarca. ome assem-
bly required: Supporting end-user sensor installation in do-
mestic ubiquitous computing environments. UbiComp 2004,
pages 107–124, 2004.

[8] S. Brand and P. U. S. A. Paper. How Buildings Learn: What
Happens After They’re Built. Penguin Books, October 1995.

[9] Chin, Callaghan, and Clarke. An end-user programming
paradigm for pervasive computing applications. Interna-
tional Conference on Pervasive Services, 0:325–328, 2006.

[10] J. Coplien, D. Hoffman, and D. Weiss. Commonality
and variability in software engineering. Software, IEEE,
15(6):37–45, Nov/Dec 1998.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged config-
uration using feature models. Software Product Lines, pages
266–283, 2004.

[12] S. Davidoff, M. K. Lee, C. Yiu, J. Zimmerman, and A. K.
Dey. Principles of smart home control. In UbiComp 2006,
pages 19–34, 2006.

[13] P. Dourish. Where the Action Is : The Foundations of
Embodied Interaction (Bradford Books). The MIT Press,
September 2004.

[14] Fahrmair, M., Sitou, W., and Spanfelner, B. Unwanted be-
havior and its impact on adaptive systems in ubiquitous com-
puting. ABIS 2006: 14th Workshop on Adaptivity and User
Modeling in Interactive Systems, October 2006.

[15] Hague, R., et al. Towards pervasive end-user programming.
UbiComp 2003, pages 169–170, 2003.

VaMoS'09

109

[16] K. Lee, K. C. Kang, W. Chae, and B. W. Choi. Featured-
based approach to object-oriented engineering of applica-
tions for reuse. Softw. Pract. Exper., 30(9):1025–1046,
2000.

[17] H. Lieberman, F. Paternò, and V. Wulf. End User Develop-
ment. Springer, 2005.

[18] C. Lueg. On the gap between vision and feasibility. In Per-
vasive ’02: Proceedings of the First International Confer-
ence on Pervasive Computing, pages 45–57, London, UK,
2002. Springer-Verlag.

[19] J. Muñoz and V. Pelechano. Building a software factory for
pervasive systems development. In CAiSE, pages 342–356,
2005.

[20] J. Muñoz and V. Pelechano. Applying software factories to
pervasive systems: A platform specific framework. In ICEIS
(3), pages 337–342, 2006.

[21] J. Muñoz, V. Pelechano, and C. Cetina. Implementing a per-
vasive meeting room: A model driven approach. In IWUC,
pages 13–20, 2006.

[22] M. W. Newman, J. Z. Sedivy, C. M. Neuwirth, W. K. Ed-
wards, J. I. Hong, S. Izadi, K. Marcelo, and T. F. Smith. De-
signing for serendipity: supporting end-user configuration
of ubiquitous computing environments. In DIS ’02: Pro-
ceedings of the 4th conference on Designing interactive sys-
tems, pages 147–156, New York, NY, USA, 2002. ACM.

[23] J. O’Brien, T. Rodden, M. Rouncefield, and J. Hughes.
At home with the technology: an ethnographic study of
a set-top-box trial. ACM Trans. Comput.-Hum. Interact.,
6(3):282–308, 1999.

[24] T. Rodden and S. Benford. The evolution of buildings and
implications for the design of ubiquitous domestic environ-
ments. In CHI ’03: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 9–16, New
York, NY, USA, 2003. ACM.

[25] A. Schmidt and L. Terrenghi. Methods and guidelines for the
design and development of domestic ubiquitous computing
applications. percom, 00:97–107, 2007.

[26] M. Weiser. The computer for the 21st century. SIGMOBILE
Mob. Comput. Commun. Rev., 3(3):94–104, 1999.

VaMoS'09

110

Dealing with Variability in Architecture De-
scriptions to Support Automotive Product Lines∗

Stefan Mann
Fraunhofer Institute for Software and Systems Engineering ISST

Steinplatz 2, 10623 Berlin, Germany
stefan.mann@isst.fraunhofer.de

Georg Rock
PROSTEP IMP GmbH

Dolivostr. 11, 64293 Darmstadt, Germany
georg.rock@prostep.com

Abstract

Architectural description languages (ADLs) are essential
means for a system and software design in the large. Their
common concepts are components, ports, interfaces and
connectors. Some of them already support the representa-
tion and management of variance, a prerequisite to support
product line engineering, but the support of variability often
stops on component level. In this paper, a more detailed view
on the integration of variability into architectural models
is taken. The focus is set on providing support for product
line engineering within the automotive E/E1 domain, where
functionality and/or its realization is varying according to
specific customer needs and hardware topologies. In general,
the fundamental question in this domain is not, whether a
product line approach should be applied, but what is the best
way to integrate it.

1. Introduction

Architecture description languages (ADLs) are widely
used to specify systems and software designs in the large.
According to nowadays complexity of embedded software
systems in the automotive industry (more than 2000 func-
tions in today’s upper class vehicles) architectural models
specified in an ADL have to be structured in different layers.

∗This work was partially funded by the Federal Ministry of Education
and Research of Germany in the framework of the VEIA project (German
acronym for “distributed engineering and integration of automotive
product lines”) under grant: 01ISF15A. The responsibility for this article
lies with the authors. For further information cf. the project’s website:
http://veia.isst.fraunhofer.de/.

1electric / electronic

We propose to use an appropriate compositional specifica-
tion formalism that gives us on the one hand the possibility
to analyze the described models concerning their variability
at each layer separately and on the other hand the possibil-
ity to integrate them within a common model in the overall
development process. The various layers introduce differ-
ent perspectives as for example a functional architecture
perspective that describes the hierarchical structure and the
corresponding interfaces of a system. During the develop-
ment of complex systems and in a distributed engineering
task such a structured and modular approach is indispensable.
Besides these aspects it is important to improve the system
development process at each stage of such a development,
especially with respect to the reuse of certain artifacts within
the development process.

In the recent past software product line based develop-
ment methodologies truly became a mainstream develop-
ment technique. Although successfully applied in the soft-
ware development field, product lines are still not state of
the art within the automotive domain of embedded software
systems. Software and E/E system product lines are build
and managed often by explicitly naming and configuring
all variants in advance and maintaining all single products
through the complete development process.

Product lines have to be engineered within a larger system
context of hardware and software systems. The proposed
layered approach respects the current development artifacts
and processes and introduces variability concepts only where
needed. As a reference, the following artifacts depicted in
Figure 1 were considered within the VEIA project. Products
and their variability are expressed using feature models as
they were introduced in [27, 39]. Logical architectures are
described using an architecture description language that al-

VaMoS'09

111

Figure 1. Artifacts of the VEIA reference pro-
cess.

lows to define variability of different specification elements
as there are optional functions, ports or function variation
points (see section 2). These logical architectures are directly
connected via a refinement relationship to the description of
so called software architectures representing an implementa-
tion of the logical architecture. This relationship is used to
trace changes made on different levels and to semantically
connect the descriptions on these levels to allow for a simul-
taneous configuration process. Both the logical architecture
and the software architecture are connected to an infrastruc-
ture layer via a deployment mapping. This infrastructure
layer specifies the topology and hardware restrictions the
upper layers rely on. Within the reference process a perva-
sive staged configuration process is established that starts
with the overall feature model and is executed through all the
layers. Within this process local constraints arising at each
layer are respected and analyzed to detect inconsistencies.
The mentioned refinement relations are formally interpreted
during the transformation process and used as constraints
within the configuration process.

Variability has to be represented in all architecture models.
The relationships between the artifacts regarding variabil-
ity issues stem from the idea of the variability pyramid in
[33], and accordingly reflect the sources of variation [7] on
the right level. In more detail, they have to incorporate the
concept of binding times for variability [40]. In [19] the men-
tioned binding time problem was addressed by specifying a
function net for the product line of a system functionality in
vehicles (see section 4) as well as two concurring software
architectures. By the use of product line metrics the two
software architectures were compared [18].

The work presented here relies on (integrated) concepts
from the areas of ADLs (cf. e.g. [29, 14, 12, 13, 31]),
product line engineering [40, 8, 33], and automotive sys-
tems engineering (e.g. [11, 35, 9, 37, 3]). The work
is based on experiences made in projects on behalf of
BMW Group where the introduction of systems and func-

tion orientation into the engineering processes were focused
[20, 21, 28]. Thus, methods to support a distributed en-
gineering and integration of automotive product lines are
developed within the BMBF funded research project VEIA,
cf. [17, 18, 19, 26, 25, 22, 23, 24, 16, 15]. Our prototypical
implementation of a case tool called v.control demonstrates
different aspects of the sketched methodology.2

In this paper we introduce the underlying concepts for the
integration of variability modeling aspects into architectural
models (see section 2) and a possibility to automatically
compute the corresponding feature tree for formal analysis
purposes (see section 3). Doing so we are able to analyze
the variance of the product line with respect to architectural
views and abstraction levels, to assess alternative solution
strategies with respect to their variability aspects, and to
evaluate them regarding development costs and efforts. We
examined the presented method with the help of an example
use case described in detail in section 4. The paper ends by
mentioning related work (section 5) and some concluding
remarks (section 6).

2. Variability concepts in architecture descrip-
tions

Components are the building blocks of an architecture
in common ADLs. Interface descriptions (ports) specify
the ability of combining components. Connectors establish
the composition by connecting ports. The composition of
components results in higher-level components again, see
e.g. [29]. As an assumption for the following discussion, a
higher level component is just a cluster of its subcomponents
and does not add any additional behavior or hides anything.
Thus, all ports not connected between the subcomponents
are delegated to the parent component. The architectural
artifacts of the VEIA reference process (cf. Figure 1) are
specializations of such a general component model. Because
of the automotive domain we concentrate on signal-based
communication between components in functional views.

Common variability concepts for product lines, e.g. found
in [27, 40, 33, 36], are dealing with optionality, alternatives
(encapsulated by XOR variation points) and OR variability.
Parameterization is also often provided. Furthermore, depen-
dencies (e.g. “needs”, “requires” or other logical statements)
are used to constrain possible combinations of variable ele-
ments.

In order to represent product lines on an architectural
level, variability concepts need to be consistently integrated
with the above mentioned architectural concepts. The inte-
gration, as sketched in the following, results in new kinds of
modeling elements on different levels of granularity:

2The implementation of the demonstrator is still work in progress. All
mentioned methods and analysis operations are prototypically realized
within v.control.

2

VaMoS'09

112

• Applying the optionality concept on components re-
sults in a differentiation of composition, i.e. we get a
distinction in mandatory and optional subcomponents.

• The integration of XOR variability into components
results in a new hierarchical relationship between com-
ponents: A component variation point represents a
generalization of alternative components as it exhibits
their commonalities with respect to the architectural
role which the alternatives are able to fulfill.3

• By the application of variability concepts on horizontal
connectors, we can distinguish between mandatory and
optional connectors. XOR variability (like “switches”
in Koala [32]) is not supported, because this situation
can be emulated by a variable component fulfilling this
task, or by a component variation point.

Delegation connectors are used to relate two hierarchi-
cal levels. They cannot exhibit own variability because
of our definition of the composition of components.

• The consistent integration of the variability concepts
yields components with varying interfaces in the form
of optional vs. mandatory ports, and in the form of
ports with fixed or varying signal sets.

• Parameterization is applicable on all architectural ele-
ments, e.g. parameterized components, ports, connec-
tors, or signals, whereby variability is supported for
their attributes.

These basic concepts are not isolated, but interrelated.
Our approach allows—and thus deals with—the situation
when variability within a component cannot be fully encap-
sulated and hidden by that component. Such a situation
happens when a component has optional subcomponents
or subcomponents with optional ports. Consider for in-
stance the optional output port poutDisplayEnhanced of
the mandatory component CbsDisplay in Figure 5. When
this port is available in one product, the corresponding com-
munication is delegated to the environment of the parent
component Cbs. Another situation when inner variability
cannot be hidden is often introduced by component varia-
tion points. Alternative components architecturally play the
same role, but they are related to different requirements or
solutions. This can cause a different demand on signals they
send or receive. The comparison of the alternatives with
respect to their ports leads to the distinction of ports which

3We do not focus on an explicit support of OR variability (i.e. select-
ing any number of elements of a set) in architectures, although it can be
a useful construct. In case that OR variance is incorporated additional
constraints on the underlying levels that describe not only the architec-
ture but also the behavior of different development artifacts have to be
incorporated. These constraints are concerned with communication or
synchronization issues that are inherited from the variance modeling at
the upper layer.

are common to all alternatives (e.g. input port pinKm of the
component variation point CbsWdSparkPlugs4 in Figure 5),
and variant-specific ports which are not present in all alter-
natives (e.g. port pinSensorsSp of the same component).
The component variation point exhibits the result of this
comparison.

Origin of
variability

Occur-
rence

Signal
set

Kind of ports wrt. vari-
ability

Notation

independent
always fixed mandatory, fixed port

(“invariant port”)

varying mandatory, varying port
(“port variation point”)

some-
times

fixed optional, fixed port

varying optional, varying port

dependent
always fixed not applicable

varying dependently varying port

some-
times

fixed dependently optional,
fixed port

varying dependently optional,
varying port

Table 1. Variability of ports.

In general, we provide a minimal / maximal view of the
communication needs of a component which has inner vari-
ability. The minimal view only comprises the common ele-
ments (the invariants). In contrast, the maximal view com-
prises the complete set of possible elements (i.e. invariant
as well as variant-specific elements). Furthermore, it is dis-
tinguished whether the variability of the element originates
from another element, i.e. if it’s independent or dependent.
Dependency is established along the hierarchical structure of
components, from lower to higher components. Ports have
to represent this differentiation, fully characterized by the
following three variability criteria:

1. Occurrence of a port: A port can be a mandatory or
an optional “feature” of a component, i.e. a port is
distinguished whether it always (part of all products)
or sometimes (in some products of the product line)
occurs.

2. Signal set of a port: The information items communi-
cated via a port can be fixed or varying. A port can have
different signal sets because of the introduction of alter-
native components. The alternatives could exhibit that
they all need information from a specific component,
but they differ in the specific signal set. In this case, the

4A component variation point is represented by a rounded rectangle
in our graphical notation, its alternatives are the direct subcomponents.
Dashed rectangles mark components as optional.

3

VaMoS'09

113

Component Port
occur-
rence

Port’s
signal
set

Possible kinds of ports on the
component

Atomic
component

always fixed invariant port

some-
times

fixed optional, fixed port

Hierarchical
composed
component

always fixed invariant port

varying dependently varying port

some-
times

fixed dependently optional, fixed
port

varying dependently optional, varying
port

Component
variation point

always fixed invariant port

varying port variation point

some-
times

fixed optional, fixed port

dependently optional, fixed
port

varying optional, varying port

dependently optional, varying
port

Table 2. Components and their ports wrt. to
variability.

corresponding port at the component variation point is
represented as a varying port.

3. Origin of variability of a port: The variability can
originate from lower level components, thus a port
can be independent or dependent with respect to its
occurrence or its signal set. Reconsider the output
port poutDisplayEnhanced of function CbsDisplay
in Figure 5. The corresponding port of function Cbs
is dependent. The same effect applies to an delegated
mandatory port of an optional subcomponent (e.g. port
pinSensorsPf of the optional component CbsWdPar-
ticleFilter). In general, there is architectural inde-
pendence of ports at atomic components, because their
inner variability is not represented on the architectural
level.

The combination of the three variability criteria results in
different kinds of ports as summarized in Table 1. Manda-
tory, fixed ports represent ports already known from common
architectural models, where no variability concept is explic-
itly integrated. Because mandatory, fixed ports are always
present (i.e. invariant), when its component is present, they
need not be configured. Thus, there is no dependent version
of them.

Along the hierarchical composition relation between com-
ponents, the variability of a component is propagated to its

Figure 2. Port dependency because of com-
ponent variation points.

upper level components. The possible combinations be-
tween components and ports are listed in Table 2. How
variability caused by alternative components is propagated
to upper levels is illustrated in Figure 2. Consider, for in-
stance, how mandatory or optional ports of the alternative
components A and B, which are encapsulated by the com-
ponent variation point C, are delegated to the upper levels.
The invariant port pC1 states that the alternatives A and B
share a common port with the same signal set. In contrast,
the varying port pC7 states, that both components have a
common port (with respect to its architectural role), but with
different signal sets.

The integration of variability concepts also introduces the
need to consistently configure the variable elements occur-
ring within an architecture description. The notions depen-
dent and independent as above introduced with respect to
ports, represent an additional specification means to classify
occurring variability. The information whether a specifica-
tion element is dependent can be automatically computed,
thus supporting the user for example by determining the
mininal set of configuration points to generate a complete
configuration.5

To which extend the described concepts are utilized dur-
ing the analysis and how far the implementation of the men-
tioned concepts is realized within the demonstrator v.control
of the VEIA project is sketched in the next section.

5This feature is currently not realized within v.control.

4

VaMoS'09

114

3. Analysis of feature models

There are a lot of proposals in literature to formally ana-
lyze feature models. Most of them translate a feature model
into a representation suitable for a formal analysis. Promi-
nent examples are Feature Modeling Plugin (FMP) [39],
pure::variants [34] or the FAMA Framework [10].

The analysis engine of FMP is based on binary decision
diagrams (BDD). pure::variants uses the logical program-
ming language Prolog to reason about feature models. These
analysis techniques are used to prove certain properties of
feature models that were related to the following questions
or operations:

1. Does the feature model has at least one valid configura-
tion (satisfiability) and if so, how many models (config-
urations) are represented by that feature model?

2. Does the feature model contain features that were never
part of a valid configuration (dead feature detection)?

3. The operation to derive a (partly) configured product
out of a feature model is most important during the de-
velopment process and strongly connected to the bind-
ing of variance.

4. If a property such as satisfiability cannot be established,
then the user should not simply get the answer “no”,
but should get a helpful explanation on the basis of his
feature model to be able to analyze the fault and repair
it.

5. The ability to prove arbitrary properties about a feature
model is concerned with nearly all the before men-
tioned operations and questions. It gives the user the
possibility to formally examine his feature model to
ensure the desired feature model behavior on a formal,
objectifiable and repeatable basis.

Within the VEIA project we aim at providing a proof of
concept in terms of a prototypical implementation of a fea-
ture modeling tool that is able to answer all the enumerated
questions and is not limited to Horn-formulae for exam-
ple. The technique that we propose is based on the same
idea as the tools mentioned above. We use a transformation
approach that translates a given feature model into a propo-
sitional logic or first-order logic formula. This approach
allows us to define arbitrary conditions on features that are
expressible in the respective logic. These conditions rep-
resent constraints on the corresponding feature model that
have to be respected if satisfiability is checked or within
a configuration process. We decided to use the automatic
theorem prover SPASS [30] as our reasoning engine. Such
a theorem prover is able to formally analyze problems with
a large number of features and it can be used to solve the

constraints arising during the configuration process. Thus,
all the above mentioned questions can be answered using this
approach that is completely implemented within v.control.
We further expect to scale up with large feature models, since
many techniques used to implement for example a constraint
propagation mechanism are already successfully used as
proving strategies within such theorem provers. Neverthe-
less, the integration into the complete development process
that is concerned with different refinement levels (see Fig-
ure 1) is still not solved completely. In the following we
sketch a proposal how to connect feature models with the
underlying architectural models especially with respect to
the configuration of feature models.

As mentioned before we propose a layered approach for
the separation of concerns on the different levels. Within
such a structured approach a connection between the various
layers has to be established that maps the feature model to
the architectural artifacts. This mapping gives us on the
one hand the possibility to trace changes over the complete
development process and on the other hand allows for an
automatic computation of model configurations. In the fol-
lowing we substantiate the notion of configuration models
with the help of a simple example taken from the CBS sce-
nario described in section 4.

In our approach we use feature models and the corre-
sponding operations defined on them as the central variabil-
ity management engine. The integration of this engine into a
system development process is one of the major tasks for an
enterprise wide consistent and non-isolated variability man-
agement approach. To this end we use a translation process
that integrates the development artifacts from different layers
into one single feature model6. Within the computation of
this model the variability analysis presented in section 2 is
used to formulate the respective constraints on functions,
ports and their connections.

The translation algorithm is based on translation rules that
constitute the mapping from architectural elements to feature
model elements (propositional formulas) as illustrated by the
following selection of rules.7

R1 An atomic function F may have mandatory ports
P1, . . . , Pn which are part of a configuration if and only
if the function itself is part of that configuration, ex-
pressed by: F ⇔ (P1 ∧ . . . ∧ Pn).

R2 An atomic function F may have optional ports
P1, . . . , Pn. If one of the optional ports is part of a
configuration, then the function F is part of that con-
figuration, expressed by: (P1 ∨ . . . ∨ Pn) ⇒ F. Note
that in this case the translation excludes configurations
where ports exist with no associated function.

6used as an internal computation and analysis model
7The complete set of rules realized within v.control covers all syntacti-

cal possibilities used during the specification of a functional architecture.

5

VaMoS'09

115

R3 A hierarchical (non-atomic) function F is decomposed
into sub-functions F1, . . . , Fn. These sub-functions
may be mandatory, i.e. if their parent is present, then the
sub-functions are present, too. A sub-function can be an
atomic function, a hierarchical function, or a function
variation point. The corresponding translation is given
by the following formula: ∀ i : 1 ≤ i ≤ n : F ⇔ Fi

R4 As described in R3 a hierarchical function F can be
decomposed into sub-functions F1, . . . , Fn. These
sub-functions may be optional. Thus, their presence
within a configuration depends on the presence of
their parent function and on the fact whether they
are selected during that configuration. The simple
formal translation is given by the following formula:
∀ i : 1 ≤ i ≤ n : Fi ⇒ F

R5 A variation point is a function F which encapsulates
the logical XOR-relation between its sub-functions
F1, . . . , Fn. If a function variation point is present then
exactly one of its sub-functions is present.8 Which
of the sub-functions F1, . . . , Fn is taken depends on
the configuration of the function variation point. The
alternatives may again be a function variation point,
or an atomic or hierarchical function. The formal
translation is reflected by the following formula:

(∀ i : 1 ≤ i ≤ n : Fi ⇒ F)
∧
(F ⇒ (F1 ∨ . . . ∨ Fn))
∧
(∀ i, j : 1 ≤ i, j ≤ n : i �= j : Fi ⇒ ¬ Fj)

The given rules can be applied recursively to architectural
specifications resulting in a feature tree with the correspond-
ing constraints that at first represents the variability occurring
within the functional architecture. Note that this represen-
tation does not represent the functional architecture itself.
It simply exploits the architecture description elements in
order to unambiguously represent their variability. The given
formal representation can then be used to formally reason
about the variability and to prove for example whether a
configuration is consistent.

To illustrate the mentioned approach let us assume we
have finished the description of the feature model that rep-
resents the product line description in Figure 1 and is shown
in Figure 4. Within the scenario described in section 4 we
have specified the corresponding function net as illustrated
in Figure 5. The function CbsWdSparkPlugs is described as
a variation point introducing two alternatives. These alterna-
tives are mirrored within the corresponding feature tree. Let
us assume for illustration issues that the alternative within
the feature tree between adaptive and linear computing has

8This holds for a completely configured product.

Figure 3. Extended feature tree for analysis
and configuration.

not been made before (so we cut the feature tree after the
WdSparkPlugs node). This leads us to the problem of intro-
ducing a new variability within the function net that is not
reflected within the feature tree. Although it is possible in
such a situation to let the user repair this model inconsistency,
we think that such an approach is error prone and it should be
possible to automatically compute a new feature tree that in-
corporates the newly introduced variability. In our example
we assume that the feature node WdSparkPlugs is mapped to
the function CbsWdSparkPlugs. From this we can conclude
that there is a new variability since the CbsWdSparkPlugs
represents a variation point. Now the computation is easy
as illustrated in Figure 3. The general idea is to represent
functions as features and their sub-functions as children of
these features. The ports associated to a function are col-
lected under a feature Ports. The dependencies between
ports9 are expressed using needs-links as depicted in Fig-
ure 3. For the sake of readability Figure 3 shows only one
needs link between the port pinSensorsSp of the function
CbsWdSparkPlugsAdaptive and the port pinSensorsSp
of the function CbsWdSparkPlugs. The connection between
the mentioned ports is only a delegating connection which is
also expressed by the established equivalence relation. For
the underlying development artifacts, which have to be con-
nected to the corresponding features in the feature tree, it
means that both ports can be identified. The complete list
of ports can in general be avoided or hidden since most of
them are mandatory and not part of some variability. Besides
this we suggest to introduce a general hiding concept that
lets the user choose the view (level of detail) of the feature
tree.

Based on this automatically computed feature tree the
user is able to configure its development artifacts on each

9occurring as delegation or horizontal connectors

6

VaMoS'09

116

layer of the development process with the help of the central
feature tree (see Figure 7). What remains to be introduced
is a concept of artifact dependencies that can be established
between different layers in the central feature tree.

4. Case study

The presented concepts are evaluated by a case study from
our project partner BMW about a distributed supporting func-
tionality in vehicles: “Condition-based service” (CBS) [19].
Hereby, necessary inspections are not any longer terminated
at regular and fixed durations of time or driven distances, but
on the real wearout of relevant wearing parts of the vehicle
like motor oil quality, brakes, spark-plugs etc. Variability
within CBS is primarily caused by different business service
concepts for specific vehicle types, different infrastructures
of supported vehicle types, and by organizational and devel-
opment process-related aspects. It is reflected in a varying
information basis for CBS, different algorithms to estimate
the wearout, and different solution strategies to implement
the functionality.

Figure 4. CBS product line description by
features (incl. configuration for a product).

The definition of a (simplified) CBS product line is shown
in Figure 4. This feature model was configured for a typical
product: a vehicle with Otto engine, no additional displays,
but where the wearout of spark plugs is detected by an adap-
tive computing method. The corresponding function net is
shown in Figure 5. Each wearing part is represented by a
function to compute the wearout. Since the product line sup-
ports two ways of computing the wearout of spark plugs, the
alternative functions CbsWdSparkPlugsLinear and CbsWd-
SparkPlugsAdaptive are introduced. The adaptive variant
needs additional input from the spark plugs sensors for the
computation. This is represented by an additional, variant-
specific port at the CbsWdSparkPlugsAdaptive function,

Figure 5. Function net for CBS.

which becomes a dependent port at the functional variation
point CbsWdSparkPlugs as well as at the (top-level) func-
tion Cbs (port pinSensorsSp). Furthermore, the wearout
detection function for spark plugs as well as for the particle
filter are optional because of hardware dependence: vehi-
cles equipped with an Otto engine have spark plugs only,
and vehicles with Diesel engines have particle filters only.
Both wearout detection functions could have been modeled
as alternatives in the function net, but we’ve decided to
model them just as options, because they do not represent
“functional” alternatives. Generally, the definition of XOR
variation points or the usage of options is always a design
decision dependent on specific objectives and situations.

5. Related work

The work presented here is related to a number of dif-
ferent efforts. Various ADLs in the literature incorporate
the hierarchical composition of components, cf. [29] for an
overview and a taxonomy for comparison of ADLs. ADLs
are also object of research for automotive or embedded sys-
tems like [11, 12, 32, 14, 5, 6].

Variability management and product line engineering is
in the scope of many efforts. ADLs for product lines often
introduce structural variability for components, but only deal
with constant, maybe optional, interfaces for components.
A comparison of those ADLs is given in [1, 36]. The no-
tation we used for ports was inspired by [32]. In contrast
to our approach, this ADL supports alternative components
by alternative connections (“switches”). By “diversity inter-
faces” a hierarchical parameterization of components and its
elements is supported.

7

VaMoS'09

117

An overview about binding times of variability and vari-
ability mechanisms is given in [40, 7, 38, 8]. General no-
tions about commonality and differences are published in
e.g. [27, 33]. Exploiting feature models for variability man-
agement is done by e.g. [39, 34]. pure::variants [34], a con-
figurator tool according to [8], uses a generic family model
as abstraction of blocks of a target language description (e.g.
source code). By configuration of a feature model, the family
model is used to concatenate the blocks to build a product.
In this way, our architectural models can be regarded as spe-
cializations of the family model. Thus, our concepts could
be integrated with such tools.

6. Conclusion

The presented method introduces the possibility to con-
nect different layers within a structured development process
in a generic way resulting in an effective approach to config-
ure and to compute products according to predefined mea-
sures. It supports the user in finding valid configurations and
guarantees that the constraints are not violated. The proposal
is flexible in the sense that it allows to incorporate variance
that is introduced at later stages of the development without
changing the before specified development artifacts. Those
artifacts that are specified and defined below the level of the
functional architecture can be integrated analogously result-
ing in a pervasive development of variability throughout the
complete product development process.

Although the concepts for the handling of variability are
not yet stable within the AUTOSAR considerations [2], our
method provides a mean to realize a pervasive handling of
variability throughout a product development process that
starts with the requirements specification and ends with an
AUTOSAR compliant software development [3, 4].

As proof of concept the work is prototypically imple-
mented in a case tool which we called v.control. It demon-
strates different aspects of our methodology: the specifica-
tion of product lines in form of function and software com-
ponent architectures including abstraction and reuse issues,
the assessment of a product line by the evaluation of the ar-
chitecture specification using metrics, and the configuration
of a product line architecture in order to consistently derive
the specifications of each of its products. For the latter we
use common feature modeling techniques for a centralized
and continuous variability management. The screenshots of
the VEIA demonstrator v.control in Figure 6 and Figure 7
illustrate the implemented functionality with respect to the
method presented in this paper. The screenshot depicted
in Figure 6 shows how the linkage between features and
functions is presented to the user. A simultaneous configura-
tion of both the feature model and the connected functional
architecture is shown in Figure 7.

The concepts realized within the demonstrator have to

be completed in the future with respect to data management
issues as for example the change management of configu-
rations, feature models and function models. Furthermore,
it is planned to allow for more flexibility within the current
fixed three tier development methodology.

References

[1] T. Asikainen. Modelling Methods for Managing Variability
of Configurable Software Product Families. Licentiate thesis
of science in technology, Helsinki University of Technology,
2004.

[2] AUTOSAR Development Partnership. AUTOSAR – AUTo-
motive Open System ARchitecture. http://www.autosar.
org/.

[3] AUTOSAR Development Partnership. AUTOSAR Method-
ology. Release 3.1, doc. 068, version 1.2.2, 2008.

[4] AUTOSAR Development Partnership. AUTOSAR Technical
Overview. Release 3.1, doc. 067, version 2.2.2, 2008.

[5] AUTOSAR Development Partnership. Software Component
Template. Release 3.1, doc. 062, version 3.1.0, 2008.

[6] AUTOSAR Development Partnership. Specification of the
System Template. Release 3.1, doc. 063, version 3.0.4, 2008.

[7] F. Bachmann and L. Bass. Managing variability in soft-
ware architectures. In Proc. 2001 Symposium on Software
Reusability (SSR), 2001. May 18-20, Toronto, Canada.

[8] F. Bachmann and C. Clements, P.˙ Variability in software
product lines. Technical Report CMU/SEI-2005-TR-012,
ADA450337, CMU-SEI, Sept. 2005.

[9] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Fre-
und, N. Mata, R. Sandner, and D. Ziegenbein. Automode –
notations, methods, and tools for model-based development
of automotive software. In Proc. of the SAE 2005 World
Congress, Detroit, MI, 2005. Society of Automotive Engi-
neers, 2005.

[10] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortes.
FAMA: Tooling a framework for the automated analysis of
feature models. In Workshop on Variability Modeling of
Software-intensive Systems (VAMOS 2007), Limerick, Ire-
land, Jan. 16-18, 2007.

[11] P. Braun, M. v. d. Beeck, U. Freund, and M. Rappl. Archi-
tecture centric modeling of automotive control software. In
Proc. SAE 2003 World Congress of Automotive Engineers,
SAE Transactions 2003-01-0856, Mar. 2003. Detroit, USA.

[12] EAST-EEA Consortium. EAST-EAA embedded electronic
architecture – definition of language for automotive embed-
ded electronic architecture. Project report Deliverable D3.6,
Version 1.02, June 2004.

[13] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity–the
Ptolemy approach. Proc. of the IEEE, 91(1):127–144, Jan.
2003.

[14] P. Feiler, D. Gluch, and J. Hudak. The architecture analysis &
design language (AADL): An introduction. CMU/SEI-2006-
TN-011, CMU-SEI, Feb. 2006.

[15] M. Große-Rhode. Architekturzentriertes Variantenmanage-
ment für eingebettete Systeme – Ergebnisse des Projekts

8

VaMoS'09

118

Figure 6. Screenshot of the VEIA prototype “v.control” wrt. configuration: Link viewer

Figure 7. Screenshot of the VEIA prototype “v.control” wrt. configuration: Configuration view.

9

VaMoS'09

119

„Verteilte Entwicklung und Integration von Automotive-Pro-
duktlinien“. ISST-Bericht 89/08, Fraunhofer ISST Berlin,
Oct. 2008. (in German).

[16] M. Große-Rhode. Methods for the development of architec-
ture models in the VEIA reference process. ISST-Bericht
85/08, Fraunhofer ISST Berlin, May 2008.

[17] M. Große-Rhode, S. Euringer, E. Kleinod, and S. Mann.
Rough draft of VEIA reference process. ISST-Bericht 80/07,
Fraunhofer ISST Berlin, Jan. 2007.

[18] M. Große-Rhode, E. Kleinod, and S. Mann. Entscheidungs-
grundlagen für die Entwicklung von Softwareproduktlinien.
ISST-Bericht 83/07, Fraunhofer ISST Berlin, Oct. 2007. (in
German).

[19] M. Große-Rhode, E. Kleinod, and S. Mann. Fallstudie
„Condition-Based Service“: Modell für die Bewertung von
logischen Architekturen und Softwarearchitekturen. ISST-
Bericht 84/07, Fraunhofer ISST Berlin, Oct. 2007. (in Ger-
man).

[20] M. Große-Rhode and S. Mann. Model-based development
and integration of embedded components: an experience
report from an industry project. In Proc. 1st Int. Workshop
Formal Foundations of Embedded Software and Component-
Based Software Architectures (FESCA 2004), Satellite event
of ETAPS 2004, April 3, 2004, Barcelona, Catalonia, Spain,
pages 112–117, Apr. 2004.

[21] M. Große-Rhode and S. Mann. Model-based systems en-
gineering in the automobile industry: Positions and experi-
ences. In Proc. Int. Workshop on Solutions for Automotive
Software Architectures: Open Standards, Reference Architec-
tures, Product Line Architectures, and Architecture Definition
Languages, Aug. 2004. Workshop at 3rd Software Product
Lines Conference SPLC 2004, Boston, Massachusetts, USA,
30 August – 2 September 2004.

[22] A. Gruler, A. Harhurin, and J. Hartmann. Modeling the
functionality of multi-functional software systems. In Proc.
14th Annual IEEE Int. Conf. on the Engineering of Computer
Based Systems (ECBS), Mar. 2007.

[23] A. Gruler, M. Leucker, and K. Scheidemann. Calculating and
modeling common parts of software product lines. In Proc.
of the 12th Int. Software Product Line Conf. IEEE, 2008.

[24] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and
model checking software product lines. In Proc. of the 10th
IFIP Int. Conf. on Formal Methods for Open Object-based
Distributed Systems (FMOODS08), LNCS, 2008.

[25] A. Harhurin and J. Hartmann. Service-oriented commonality
analysis across existing systems. In Proc. 12th Int. Software
Product Line Conf. IEEE Computer Society, Sept. 2008.

[26] A. Harhurin and J. Hartmann. Towards consistent specifi-
cations of product families. In Proc. 15th Int. Symposium
on Formal Methods, volume 5014 of LNCS. Springer-Verlag,
May 2008.

[27] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (FODA) – feasibility study.
CMU/SEI-90-TR-21, CMU-SEI, Nov. 1990.

[28] E. Kleinod. Modellbasierte Systementwicklung in der Auto-
mobilindustrie – Das MOSES-Projekt. ISST-Bericht 77/06,
Fraunhofer ISST Berlin, Apr. 2006. (in German).

[29] N. Medvidovic and R. Taylor. A classification and com-
parison framework for software architecture description

languages. IEEE Transactions on Software-Engineering,
26(1):70–93, Jan. 2000.

[30] Max-Planck-Institut Informatik, Saarbrücken. SPASS: An
automated theorem prover for first-order logic with equality.
Theorem prover. http://spass.mpi-sb.mpg.de/.

[31] Object Management Group. OMG Systems Modeling Lan-
guage (SysML) Specification. OMG Document formal/2008-
11-01, Nov. 2008. Version 1.1.

[32] R. Ommering. Building Product Populations with Soft-
ware Components. PhD thesis, Rijksuniversiteit Groningen,
Groningen, Nederlands, 2004.

[33] K. Pohl, G. Böckle, and F. v. d. Linden. Software Product
Line Engineering – Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[34] pure::systems GmbH. pure::variants. CASE tool. http:
//www.pure-systems.com/.

[35] J. Schäuffele and T. Zurawka. Automotive Software Engi-
neering. ATZ-MTZ-Fachbuch. Vieweg, 2003.

[36] M. Sinnema and S. Deelstra. Classifying variability modeling
techniques. Elsevier Journal on Information and Software
Technology, 49(7):717–739, July 2007.

[37] G. Steininger. Functional modelling for architecture de-
sign of distributed ecu networks. In Proc. 3rd Workshop
on Object-oriented Modeling of Embedded Real-Time Sys-
tems (OMER 3), volume 191 of HNI-Verlagsschriftenreihe,
Paderborn, 2006.

[38] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of
variability realization techniques. Software: Practice and
Experience, 35(8):705–754, Apr. 2005.

[39] University of Waterloo, Canada. Feature modeling plugin
(version 0.7.0). CASE tool (Eclipse plugin), 2006. http:
//gsd.uwaterloo.ca/projects/fmp-plugin/.

[40] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of
variability in software product lines. In Proc. 2nd Working
IEEE / IFIP Conf. on Software Architecture (WICSA), pages
45–54. IEEE Computer Society, 2001.

10

VaMoS'09

120

A Preliminary Comparison of Formal Properties on Orthogonal Variability

Model and Feature Models

Fabricia Roos-Frantz ∗

Universidade Regional do Noroeste
do Estado do Rio grande do Sul (UNIJUÍ)

São Francisco, 501.
Ijuı́ 98700-000 RS (Brazil)

frfrantz@unijui.edu.br

Abstract

Nowadays, Feature Models (FMs) are one of the most
employed modelling language by managing variability in
Software Product Lines (SPLs). Another proposed language
also in order to managing variability in SPLs is the Or-
thogonal Variability Model (OVM). Currently, the differ-
ences between both languages, FMs and OVM, are not so
clear. By considering that a formal language should have
a well defined syntax and semantics, some authors had de-
fined syntax and semantics of FMs explicitly. However, in
in the definition of OVM, its semantic domain and semantic
function are not well discussed. Without this clear defini-
tion, we could have a misinterpretation when using OVM
diagrams. Our aim in this paper is to clarify and better ex-
plore the abstract syntax, the semantic domain and the se-
mantic function of OVM, and to emphasize the differences
between FMs and OVM concerning such aspects.

1. Introduction and Motivation

Documenting and managing variability is one of the two
key properties characterising Software Product Line Engi-
neering (SPLE) [7]. Over the past few years, several vari-
ability modeling techniques have been developed aiming to
support variability management [10]. In this paper we take
into account two modelling languages: FMs, that are one of
the most popular, and OVM. We want to discuss about the
differences between both languages.

FM was proposed for the first time in 1990 and currently
it is the mostly used language to model the variability in
SPL. This model capture features commonalities and vari-
abilities, represents dependencies between features, and de-

∗PhD student at the University of Sevilla

termines combinations of features that are allowed and for-
bidden in the SPL [4].

OVM is a variability model proposed by Klaus Pohl et
al. [7] for managing the variability in the applications in
terms of requirements, architecture, components and test ar-
tifacts. In an OVM only the variability of the product line
is documented. In this model a variation point (VP) docu-
ments a variable item, i.e a system functionality which can
vary and a variant (V) documents the possible instances of a
variable item. Its main purpose are: (1) to capture the VPs,
i.e. those items that vary in an SPL, and (2) to represent Vs,
i.e. how the variable items can vary and (3) to determine
constraints between Vs, between Vs and VPs and between
VPs and VPs.

A fundamental concern, when we want to do a reasoning
about a language, is to make it a formal language [4]. In
the words of Schobbens et al. [9], “formal semantics is the
best way to avoid ambiguities and to start building safe au-
tomated reasoning tools for a variety of purposes including
verification, transformation, and code generation”. Accord-
ing to Harel and Rumpe [3], a language is formal when it
has a well defined syntax (the notation) and a well defined
semantics (the meaning).

Nowadays we have a well defined syntax and semantics
to FM languages [9], i.e. we can construct FMs without
misinterpretation, because we know what is a correct model
and what it means exactly. However, if we are working with
OVM we are not sure about the correct meaning of these
models and also about the real differences between FMs and
OVM. This paper focus on doing a review about OVM’s
syntax and semantics, which were proposed in the literature,
and discuss about the differences between FMs and OVM in
order to avoid misunderstanding.

The remainder is organized as follows: Section 2 dis-
cusses about the abstract syntax of OVM and compares
some of its properties with FMs; Section 3 we comment

VaMoS'09

121

about the OVM’s semantic domain and FM’s semantic do-
main, and we suggest another semantic domain to OVM;
Section 4 we discuss about the OVM’s semantic function
and FM’s semantic function; Section 5 presents our conclu-
sions.

1.1. Feature Models (FMs)

The first feature model was proposed in 1990 [5] as part
of the method Feature-Oriented Domain Analysis (FODA).
Since then, several extensions of FODA have been pro-
posed. A FM represents graphically a product line by means
of combinations of features. A FM is composed of two main
elements: features and relationships between them. Fea-
tures are structured in a tree where one of these features is
the root. A common graphical notations is depicted in Fig-
ure 1.

Figure 1: Graphical notation for FM

Figure 2 is an example of feature model inspired by
the mobile phone industry. It defines a product line where
each product contains two features: Call and Connectivity.
Where Call is a mandatory feature and Connectivity is an
optional feature. It means that all application that belongs
to this SPL must have the feature Call and can have the fea-
ture Connectivity. Each product must have at least one of
the two types of call, voice or data, because of the relation-
ship OR. If the product has the feature Connectivity, then it
must have at least one of the two features, USB or Wifi.

Figure 2: Example of FM

1.2. Orthogonal Variability Model (OVM)

OVM is a proposal for documenting software product
line variability [7]. In an OVM only the variability of the
product line is documented. In this model a variation point
(VP) documents a variable item and a variant (V) docu-
ments the possible instances of a variable item. All VPs
are related to at least one V and each V is related to one VP.
Both VPs and Vs can be either optional or mandatory (see
Figure 3). A mandatory VP must always be bound, i.e, all
the product of the product line must have this VP and its Vs
must always be chosen. An optional VP does not have to
be bound, it may be chosen to a specific product. Always
that a VP, mandatory or optional, is bound, its mandatory
Vs must be chosen and its optional Vs can, but do not have
to be chosen. In OVM, optional variants may be grouped in
alternative choices. This group is associated to a cardinal-
ity [min...max] (see Figure 3). Cardinality determines how
many Vs may be chosen in an alternative choice, at least
min and at most max Vs of the group. Figure 3 depicts the
graphical notation for OVMs [7, 6].

Figure 3: Graphical notation for OVM

In OVM, constraints between nodes are defined graph-
ically. A constrain may be defined between Vs, VPs and
Vs and VPs and may be an excludes constraint or a re-
quires constraint. The excludes constraint specifies a mu-
tual exclusion, for instance, a variant excludes a optional
VP means that if the variant is chosen to a specific prod-
uct the VP must not be bound, and vice versa. A requires
constraint specifies an implication, for instance, a variant
requires a optional VP means that always the variant is part
of a product, the optional VP must be also part of that prod-
uct. Figure 4 depicts a example of an OVM inspired by the
mobile phone industry.

2. Syntax: abstract and concrete syntax

In graphical languages, such as FMs and OVM, the phys-
ical representation of the data is known as concrete syntax.
In other words, what the user see, like arrows and squares,
is only the concrete syntax. Defining rigid syntactics rules

VaMoS'09

122

Hierarchical Multiple Variation Complex
Nodes structure inheritance Points constraints

FM (Batory [1]) Features yes no not explicit yes
OVM-KP (Klaus Pohl et al. [7]) VPs and Vs no yes Mandatory no
OVM-M (Metzger et al. [6]) VPs and Vs no no Mandatory / Optional no

Table 1: Summary of abstract syntax properties.

Figure 4: OVM example: mobile phone product line

in visual languages is a difficult task, for this reason, a com-
mon practice is to define a formal semantics of the language
based on its abstract syntax. The abstract syntax is a repre-
sentation of data that is independent of its physical repre-
sentation and of the machine-internal structures and encod-
ings [4].

The first OVM’s abstract syntax was proposed by Klaus
Pohl et al. [7]. The authors proposed a metamodel, which
describes what is a well-formed diagram. Later, Metzger
et al. [6] proposed an OVM’s abstract syntax which use a
mathematical notation to describe a well-formed diagram.
In this section we will compare both abstract syntax, un-
derlining the main differences between them. At the same
time, we will compare the properties of OVM language with
FMs languages according to the abstract syntax. In order to
compare both languages we will use the FM proposed by
Batory [1], and we will refer to FMs as the proposed in [1].

Table 1 compares some properties about different ab-
stract syntaxes. Each row of this table represents an ab-
stract syntax proposed in the literature. The first one is FM-
Batory, which was proposed in [1]. The second is OVM-
KP, which was proposed in [7] and the third is OVM-M,
proposed in [6]. Each column represents a property of the
language. Bellow we describe and comment each one of
these properties.

• Nodes. We use the term “nodes” to say what a node
represents in a graph. For example, in a FM the nodes
of the graph are features. It means that each node rep-
resents an increment in system functionality. On the
other hand, either in OVM-KP or OVM-M, the nodes
are VPs (variation points) and Vs (variants), i.e. each

functionality of the system that vary is represented by
a VP, and each V represents how the VP can vary.

• Hierarchical structure. This property states if a graph
has a hierarchical structure or not. The FM is repre-
sented by a tree and there is one node that is a root.
Each node of the tree, with the exception of the root,
have one parent. On the other hand, OVM diagrams
do not have a hierarchical structure. This diagrams
are composed for variation points, which always have
child variants. In this diagram there is no a root node,
the diagram is composed of a set of VPs with its pos-
sible variants.

• Multiple inheritance. Happens when a well formed di-
agram allows a node to have two different parents. The
FM does not allow a feature to have more than one par-
ent. When dealing with OVM, this property is defined
in two different ways. In Pohl’s abstract syntax the
diagram can have variants with different VP parents;
however, in the second proposal, a variant can have
only one VP parent.

• Variation Points. Here we consider if graph nodes rep-
resent variation points explicitly. In FM all nodes are
features, there is no explicit way to represent varia-
tion points. The way that FMs represent the variation
points, identified in requirements, is through optional
or alternative feature. On the other hand, in OVM, all
variable item in an SPL is represented by a specific
node called VP. In OVM-KP a VP only can be manda-
tory, i.e. all products of an SPL share this VP. How-
ever, in OVM-M, a VP can be mandatory or optional,
i.e. if it is mandatory it will be in all products of the
SPL; otherwise if it is optional, it will be only in those
products which such VP was bound.

• Complex constraints. In both languages, FM and
OVM, in addition to diagrams there are constraints that
restrict the possible combinations of nodes. In FM we
can specify constraints more complex than only ex-
cludes and requires. For example, we can write con-
straints like: (F requires A or B or C), this means F
needs features A, B, or C or any combination thereof.

VaMoS'09

123

In OVM, only constraints of type excludes and requires
can be specified.

3. Semantics: semantic domain

According to Harel and Rumpe a language’s semantics
“must provide the meaning of each expression and that
meaning must be an element in some well defined and well-
understood domain” [3]. In this definition we have two im-
portant information about the definition of semantics. First
of all the semantics must give a meaning to each element
defined in the language’s syntax. Second, to define such
meaning we need a well defined and well-understood do-
main. This domain, called “semantic domain” is an ab-
straction of reality, in such a way that determine what the
language should express.

When we were reviewing the literature we realized that
the OVM models are treated like FMs, namely, they rep-
resent the same domain. But, what means to represent the
same domain? Have they the same semantic domain? Ac-
cording to Batory [1] a FM represents a set of products, and
each product is seen as a combination of features. Then, a
FM represents all the products of the SPL. By considering
this, the semantic domain of a FM is considered a prod-
uct line [9], i.e. the set of sets of combinations of features
PP(f).

The semantic domain of OVM is also considered a prod-
uct line [6]. Hence, product line is a set of products and
each product is a combination of VPs and Vs, then the se-
mantic domain of OVM is a set of sets of combinations of
VPs and Vs, i.e. the PP(V P ∪ V s).

Until now, the semantic domain of OVM has been con-
sidered like in FM, the set of sets of combinations of nodes.
But, if in OVM we were interested only in variations, we
can consider that the semantic domain of OVM is a set of
sets of combinations of only variants. Then, the semantic
domain of OVM is a product line and each product is a set
of variants, i.e. the set of sets of combinations of variants
PP(V). In this way we consider that each product of the
product line has only variants and not variation points. For
example, for the model of the Figure 4 the semantic domain
is the PP(V), where V is the set {Voice, Data, Wifi, USB}.

4. Semantics: semantic function

The definition of semantics, proposed by Harel and
Rumpe, stated that it must provide a meaning of each ex-
pression and that meaning must be an element in some do-
main. The domain is the semantics domain (S) and the ex-
pressions are represented by the syntactic domain (L). Ac-
cording to Heymans et al. [4], the set of all data that comply
with a given abstract syntax is called the syntactic domain.

The function that relates (L) and (S) by giving a meaning
to each expression is called semantic function (M). Then,
M : L → S. To every diagram of L , the function M
assigns a product line in S.

Figure 5: Semantic function of FM

Figure 5 gives an illustration of the FM’s semantic func-
tion. In this figure we have two different FMs that com-
ply with a FM’s abstract syntax, and we have a seman-
tic function that assigns to each diagram a different prod-
uct line in the semantic domain MF : LF → PL where
PL = PP(f), i.e the power set of set of features. For ex-
ample, if we have those two diagrams of the Figure 6 (a)
and (b), and we apply this semantic function, we will have
respectively the product line MF (fm1) and MF (fm2).

MF (fm1)= {{f1,f2,f3,f4,f7}, {f1,f2,f3,f4,f7,f6},
{f1,f2,f3,f5,f7}, {f1,f2,f3,f5,f7,f6}}

MF (fm2)= { {f1,f2,f4}, {f1,f2,f5}, {f1,f2,f4,f3,f6},
{f1,f2,f5,f3,f6}, }

Figure 7 depicts an illustration of the OVM’s seman-
tic function proposed by Metzger et al. [6]. In this figure,
each different OVM diagram that comply with the OVM’s
abstract syntax are assigned by the semantic function to
each product line in the semantic domain. The seman-
tic function is MOV M−M : LOV M−M → PL, where
PL = PP(V P ∪V). In this case, Metzger et al. define that
in OVM a product line is defined like a combination of VPs
and Vs. For example, if we have the two diagrams of the
Figure 8 (a) and (b), and we apply the semantic function, we
will have respectively the product line MOV M−M (ovm1)

(a) (b)

Figure 6: Concrete syntax of fm1 (a) and fm2 (b)

VaMoS'09

124

and MOV M−M (ovm2).

Figure 7: Semantic function of OVM-M

Figure 8: Concrete syntax of ovm1 (a) and ovm2 (b)

MOV M−M (ovm1)= {{VP1,V1,VP2,V2},
{VP1,V1,VP2,V2,VP3,V4}, {VP1,V1,VP2,V3},
{VP1,V1,VP2,V3,VP3,V4}}

MOV M−M (ovm2)= { {{VP1,V1}, {VP1,V1,V2},
{VP1,V1,V2,VP2}, {VP1,V1,V2,VP2,V3}, {VP1,V1,VP2},
{VP1,V1,VP2,V3}}

If we consider that a semantic domain of OVM is
PP(V), we have another semantic function. But, as we
already have the semantic function to the semantic domain
PP(V P ∪V), we can achieve the semantic domain PP(V)
excluding all VPs of the products. For example, the product
line MOV M−M (d2) would be

MOV M−M (d2)= {{V1}, {V1,V2}, {V1,V2,V3},
{V1,V3}}

We can notice that with this semantic domain (PP(V))
we have 4 products instead of 6, because two of them are
duplicated {V1} and {V1,V2}. This happens because of
the Optional VP2. When we consider that the VPs are part
of the products, and in the model we have a optional VP
with an optional child, we will have two products that are
the same when implemented. For example, the products
{VP1,V1} and {VP1,V1,VP2}. In fact the functionality that
will be implemented will be V1, both products are the same.

To discuss about the difference between both OVM’s se-
mantic domain, we will use as an example the equivalence
problem discussed in [8]. The equivalent models operation
checks whether two models are equivalent. Two models are
equivalent if they represent the same set of products [2].
According to OVM-M, if we observe the example depicted
in the Figure 9, we can say that both models are equivalent,
because they represent the same set of products. In the prod-
uct of the OVM1, Media is a variation point and in OVM2,
Media is a variant. In this example we have considered that
the semantic domain of OVM was PP(V P ∪ V), then the
models seem to be equivalents because they represent the
same set of products: {Media, MP3, MP4} = {MP3, Me-
dia, MP4}.

Figure 9: Equivalent models?

But, if we consider that the semantic domain of OVM is
PP(V), then the models are not equivalents because they
represent different set of products, {MP3, MP4} �= {Media,
MP4}.

5. Conclusion and future work

The main contribution of this paper is to go forward in
the discussion about the proposal existent in the literature
regarding the formalization of OVM. We want to clarify
what are the main differences between FMs and OVM to
avoid future misinterpretation. There are differences be-
tween their abstract syntax like, the sort of nodes, the graph
structure, types of information that capture, and the con-
straint that can be specified. On the other hand, in spite of

VaMoS'09

125

their semantic domain is considered the same, i.e a set of
sets of combinations of nodes (PP(nodes)), we consider
that should be possible define the semantic domain of OVM
as a set of sets of combinations of variants (PP(V)). We
think that we need to find out what is the most adequate
semantic domain to deal with OVM in order to design a
reasoning tool.

We trust that a well understood formal language is the
starting point for our future work toward a safe automated
reasoning tool for analysis of OVM models. In order to
provide this tool, the next step of our work is to specify all
the analysis operations that may be applied to OVM and
formally define them.

6. Acknowledgement

We would like to thank David Benavides and Antonio
Ruiz Cortés for their constructive comments. This work
was partially supported by Spanish Government under CI-
CYT project Web-Factories (TIN2006-00472) and by the
Andalusian Government under project ISABEL (TIC-2533)
and Evangelischer Entwicklungsdienst e.V. (EED).

References

[1] D. S. Batory. Feature models, grammars, and propositional
formulas. In Software Product Lines Conference, volume
3714 of Lecture Notes in Computer Sciences, pages 7–20.
Springer–Verlag, 2005.

[2] D. Benavides. On the automated analysis of software prod-
uct lines using feature models. PhD thesis, University of
Sevilla, 2007.

[3] D. Harel and B. Rumpe. Meaningful modeling: What’s the
semantics of “semantics”? IEEE Computer, 37(10):64–72,
2004.

[4] P. Heymans, P.-Y. Schobbens, J.-C. Trigaux, Y. Bontemps,
R. Matulevicius, and A. Classen. Evaluating formal proper-
ties of feature diagram languages. IET Software, 2(3):281–
302, June 2008.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature–Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University, November
1990.

[6] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variabil-
ity in software product lines: A separation of concerns, for-
malization and automated analysis. In Requirements Engi-
neering Conference, 2007. RE ’07. 15th IEEE International,
pages 243–253, 2007.

[7] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Fundations, Principles and Tech-
niques. Springer–Verlag, Berlin, DE, 2005.

[8] Roos-Frantz and S. Segura. Automated analysis of orthogo-
nal variability models. a first. In 1st Workshop on Analyses
of Software Product Lines (ASPL08), 2008.

[9] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bon-
temps. Generic semantics of feature diagrams. Computer
Networks, 51(2):456–479, Feb 2007.

[10] M. Sinnema and S. Deelstra. Classifying variability mod-
eling techniques. Information & Software Technology,
49(7):717–739, 2007.

VaMoS'09

126

Some Challenges of Feature-based Merging of Class Diagrams

Germain Saval
PReCISE Research Center

Faculty of Computer Science
FUNDP, University of Namur

gsa@info.fundp.ac.be

Jorge Pinna Puissant
Software Engineering Lab

University of Mons-Hainaut (U.M.H.)
Jorge.PinnaPuissant@umh.ac.be

Patrick Heymans
PReCISE Research Center

Faculty of Computer Science
FUNDP, University of Namur

phe@info.fundp.ac.be

Tom Mens
Software Engineering Lab

University of Mons-Hainaut (U.M.H.)
tom.mens@umh.ac.be

Abstract

In software product line engineering, feature mod-
els enable to automate the generation of product-
specific models in conjunction with domain “base
models” (e.g. UML models). Two approaches ex-
ist: pruning of a large domain model, or merging
of model fragments. In this paper, we investigate
the impact of the merging approach on base mod-
els, and how they are made and used. We adopt an
empirical method and test the approach on an ex-
ample. The results show several challenges in the
way model fragments are written, the need for new
modelling language constructs and tool support.

1. Introduction

A Software Product Line is “a set of software-
intensive systems that share a common, managed
set of features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way” [1]. Software Product Line En-
gineering (SPLE) is a rapidly emerging software
engineering paradigm that institutionalises reuse
throughout software development. By adopting
SPLE, one expects to benefit from economies of

scale and thereby lower the cost but also improve
the productivity, time to market and quality of de-
veloping software.

Central to the SPLE paradigm is the modelling
and management of variability, i.e., “the common-
alities and differences in the applications in terms
of requirements, architecture, components, and test
artefacts” [2]. In order to tackle the complexity
of variability management, a number of supporting
modelling languages have been proposed.

An increasingly popular family of notations is
the one of Feature Diagrams (FD) [3]. FDs are
mostly used to model the variability of applica-
tion “features” at a relatively high level of gran-
ularity. Their main purposes are (1) to capture fea-
ture commonalities and variabilities, (2) to repre-
sent dependencies between features, and (3) to de-
termine combinations of features that are allowed
or forbidden in the SPL.

Because FDs can be equipped with a formal
semantics [4], they can be integrated into a model-
driven engineering approach [5] and used to auto-
matically generate (a set of) models specifying par-
ticular products from the product family, the prod-
uct models. There are two basic approaches to gen-
erate product models:

1. a pruning approach where a global domain

VaMoS'09

127

1

2

3

4

A

B C

D E F

prune

1

2

3

�

�

Feature Model Domain Model Product Model

Base Models

Figure 1. Pruning of a large model

model is tailored to a specific product by re-
moving model elements from a feature model
configuration (Figure 1);

2. a merging approach where different models
or fragments, each specifying a feature, are
combined to obtain a complete product model
from a feature model configuration (Figure 2).

Our research question can be stated as follows:
when specifying static properties of features and
generating a product model from a configured fea-
ture diagram, what are the challenges faced by the
analyst using a merging approach?

The rest of this paper is organised as follows.
In Section 2.1, we will give an overview of the
techniques proposed in the literature for model
pruning, and in Section 2.2 for model merging.
In Section 3, our example and the experimental
settings will be presented. In the following sec-
tions, each identified challenge will be stated and
discussed: The problem of synchronising different
model fragments will be discussed in Section 4; the
absence of variability notation in base models in
Section 5; and the determination of the scope of
a model fragment in Section 6. Requirements for
better tool support will be suggested in Section 7.
Section 8 will be devoted to a general discussion
of our findings and future works will conclude this
paper in Section 9.

2. Two generative approaches

2.1. Feature-based model pruning

Gottschalk et al. [6] favor a pruning approach
to deal with dynamic aspects. They propose to

1

2

3

3 4

merge

1

2

3

4

A

B C

D E F

�

�

Model Fragments Product ModelFeature Model

Base Models

Figure 2. Merging of model fragments

configure domain models expressed by workflows
(Petri nets). Their pruning algorithm comprises
three steps: (1) removing elements that were not
selected, (2) cleaning obsolete elements that are
now disconnected, (3) check that every element is
on a path from workflow input to output. Their ap-
proach is however not specific to SPL and does not
use feature models.

Czarnecki et al. [7] also use a pruning ap-
proach. Each element of an activity diagram is
annotated with a presence condition, expressed in
terms of features. A FD is used to configure the
activity diagram and a “flow analysis” ensures that
each element is on a valid path and that the types of
object flows are compatible. The same technique
is used to configure the associated data model.
Schätz [8] proposes a similar although less general
approach based on reactive components that com-
bine a domain-specific model (automata, compo-
nent diagrams and application-specific conceptual
model) and a variability model.

2.2. Feature-based model merging

Sabetzadeh et al. [9] use model merging to
detect structural inconsistencies. They transform
a static model into a graph and then into a re-
lational model, i.e., a textual description of the
model. The consistency checks are expressed as
a query on this relational model. Model merging is
performed with the help of an interconnection dia-
gram, which specifies semantic equivalence groups
between model elements from different models.
Traceability of model elements is kept along the

VaMoS'09

128

way, enabling to identify the origins of a detected
inconsistency. In [10, 11, 12], the authors ad-
dress dynamic models with behavioural matching
as well. They provide algorithms and tool support
to merge base models. Their work is not targeted
on SPLE but, as we will see, is applicable here.

On the other hand, Perrouin et al. [13] specif-
ically target SPLE. They propose to derive a prod-
uct model by merging UML class diagram frag-
ments. Their approach consists of two steps. First,
given a feature model, a set of core assets and com-
position constraints, they merge model elements
(e.g., classes) based on signature matching. The
signature of a model element is defined as a set
of syntactic properties for the element type, and
can be reduced to its name. Second, the merged
model can be customised to support additional fea-
tures that were not included in the product family.

3. Testing Perrouin et al. merging approach

The experiment presented here followed the
merging approach by Perrouin et al. [13]. The
latter was chosen because it is integrated, model-
driven and focused on SPLE. This experiment con-
stitutes a first step towards comparison of the prun-
ing and merging approaches, and further devel-
opment and improvement of those. The chosen
approach do not propose a specific merging al-
gorithm and was complemented with the merging
techniques of Sabetzadeh et al. [9].

3.1. The Conference Management System ex-
ample

Through the rest of the paper we will use
the example of a conference management system
(ConfMS). A ConfMS is a software system that as-
sists the Organising Committee of a scientific con-
ference in the different phases of the conference or-
ganisation: publicise conference information like
the Call for Papers, manage the submission and the
review of the papers, organise the conference event
locally, (i.e. the schedule, the sessions, the rooms),
and publish the proceedings.

The IEEE [14] defines a conference as a “ma-
jor meeting which covers a specialised (vertical) or
broad range (horizontal) set of topics (...) The pro-

gram of a conference is designed to provide max-
imum opportunity for presentation of high quality
papers appropriate to the defined scope of the con-
ference. To this end, a Call for Papers is issued to
attract the most qualified presenters possible. Pre-
sentations are accepted after appropriate peer re-
view.”

The authors’ knowledge of the ConfMS do-
main comes from another experiment meant to
select and evaluate software [15], leading to the
construction of several domain models. Figure 3
presents a feature diagram of such a ConfMS. The
constructions used in this diagram are: features
(rounded boxes), the usual and-decomposition
(edges), optional nodes (hollow circles), xor-
decomposition (edges with an arc), a requires con-
straint (thick arrow) and cardinalities (between
curly braces). The features in white concern the
review phase of conference organisation, we will
specify them with a class diagram and obtain mod-
els for different products using the merging tech-
nique of Sabetzadeh et al. presented in section 2.2.

The PC Organisation feature represents the
hierarchical layout of the programme committee
(PC): the presence of a single PC or of multiple
PCs (Single PC or One PC per Track) and the pres-
ence of a Review Board (RB) that oversees the
work of the PC. The Reviewing Process feature de-
scribes how the different reviewing steps are laid
out in sequence (One Step or Two Steps), if review-
ers can delegate their reviews to others (Delega-
tion) or if authors can comment the reviews (Rebut-
tal). The Review Discussion feature represents the
possibility for reviewers to discuss the papers. The
Discussion Medium feature represents the different
means of discussion (by Meeting or via Electronic
forum). The Acceptance feature represents the ac-
ceptance decision process for each paper. The list
of accepted papers can be decided after discussion
(By Discussion) by the PC (Of PC) or by the RB
(Of RB), or by the Programme Chair alone (By
PCC).

3.2. The experimental settings

The experiment was conducted by the two first
authors, both PhD students who are knowledge-

VaMoS'09

129

Conference
Management

Publicity
Programme

Management
Local

Organisation
Publishing

Submission Review Schedule

Abstract
Submission

Paper
Submission

PC
Organisation

Reviewing
Process

Review
Discussion

Acceptance

Review
Board

Tracks

Single PC
One PC per

Track

Delegation

One Step

Two Steps

Rebuttal

Discussion
Facility

By PCC

Of PCOf RB

Meeting Electronic

By
Discussion

{1..2}

«requires»

CRC
Submission

«requires»

«requires»

Figure 3. Conference Management System Feature Diagram

able in UML and feature modelling techniques,
during ten eight-hour working days, using only an
erasable white board, pens, generic diagramming
tools (Poseidon for UML and OmniGraffle) and
coffee.

The authors wrote the base class diagram pre-
sented in Figure 4, which models the commonal-
ities of all the products of the feature diagram of
Figure 3. They then wrote a class diagram frag-
ment to model each sub-feature of the Review fea-
ture. The base diagram was completed iteratively
by detecting the common model elements in every
model fragment.

Although the general framework of Perrouin
et al. [13] was followed, the merging algorithm it-
self used to generate these diagrams was executed
manually and based on syntactic name matching
inspired by Sabetzadeh et al. [9]. Equivalence
groups between model elements are easier to deter-
mine in the experimental settings, instead of writ-
ing transformations inside Perrouin et al. [13] tool,
and gives greater flexibility to test different solu-
tions.

The first product generated by merging model
fragments P1 = {Review; PC Organisation; Tracks;

Single PC; Reviewing Process; One Step; Accep-
tance; By PCC} suits a small conference or a work-
shop, where there is a single PC and the acceptance
decision is taken by the Programme Chair.

The second product P2 = {Review; PC Organ-
isation; Tracks; Single PC; Review Board; Review-
ing Process; Delegation; One Step; Rebuttal; Re-
view Discussion; Discussion Medium; Electronic;
Meeting; Acceptance; By Discussion; Of RB} suits
a bigger conference where a Review Board super-
vises the reviewing of the PC and the decision is
taken by this Review Board. The software should
provide electronic and live meeting discussion fa-
cilities and allow review delegation.

Several challenges surfaced from this experi-
ment, both during domain modelling and during
the product model generation. In the next sections,
we will detail three of them. Each is illustrated
by the problems we faced during the experiment.
Each of the following sections is subdivided as fol-
lows: firstly, the context in which a challenge ap-
pears is explained; secondly, we give specific in-
stances encountered during the experiment, how
we tried to overcome the problem and what are the
alternatives available in the state of the art; finally,

VaMoS'09

130

title : String
abstract : String
content : String
submitted : Date

Paper

Reviewer

1..*

*

name : String
affiliation : String
email : String

Person

Author

Programme Chair

{overlapping, complete}

writes
�

auth

received : Date
content : String

Review
*

1

rev 1

◀ writes*

template : String

Review Form

submissionDeadline : Date
notificationDeadline : Date
CRCDeadline : Date
conference : Date

Call for Papers

writes
�

1

1

1

11

1

*

*

◀ compliesTo

writes
�

Programme Committee

*

1

not for
the same

paper

Figure 4. Base Class Diagram

we try to discuss the remaining issues and suggest
improvements.

The order in which the challenges are pre-
sented was chosen only to facilitate the reader’s
comprehension and do not follow any order of im-
portance or frequency. Those challenges were only
selected among others because they had an impor-
tant impact on the modelling process. Other chal-
lenges will be discussed in Section 8.

4. Challenge 1: distributed modelling and
the need for synchronisation

4.1. Context: diverging base models

A first model comprising only the common
concepts of the ConfMS was drawn. Then each
feature was modelled successively. For a larger ap-
plication however, it is likely that several features
will be modelled in parallel. Remarkably, in both
cases, the modelling process imposes some syn-
chronisation to update the base models (it is a case

of co-evolution of models). The use of a common
terminology or, at least, a common understanding
between the teams is therefore necessary. Espe-
cially since models are coupled and features inter-
act with each other, it is important to achieve some
level of agreement to be able to successfully merge
the model fragments.

4.2. An instance

The two fragments (F1 and F2) made of a set
of interrelated classes shown in Figure 5 describe
two different types of discussion. The Review Dis-
cussion feature (F1) offers reviewers the possibil-
ity to discuss the paper and their review. The By
Discussion of Review Board feature (F2) offers to
the Review Board the possibility to discuss the ac-
ceptance decision of a paper.

F1 and F2 have a common part (F1
⋂

F2) and
different parts F1 � F2 = (F1 − F2)

⋃
(F2 − F1).

After merging the fragments, the resulting class di-
agram contains the common parts (F1

⋂
F2) and

the different parts (F1 � F2). The latter are asso-

VaMoS'09

131

Review Board

Acceptance
Decision

1
1

*
1

title : String
abstract : String
content : String
submitted : Date

Paper

Discussion

Reviewer

Programme
Chair

participatesIn

initiates

1

*

*
1

1

1

F2
F1

F1 = {Reviewer, Programme Chair, Paper, Discussion}
F2 = {Acceptance Decision, Review Board, Paper, Discussion}

Figure 5. Merging of Two Features Class Dia-
gram Fragment

Review Board

Acceptance
Decision

1
1

*

1

title : String
abstract : String
content : String
submitted : Date

Paper

Discussion

Reviewer

Programme
Chair

participatesIn

initiates

1

*

*1

1

1

F2F1

Acceptance
Discussion

Review
Discussion

Figure 6. Merging of Two Features Class Dia-
gram Fragment with class hierarchies

ciated to the common part. In this case, they are
associated to the Discussion class.

The resulting class diagram is syntactically
correct but it represents two very different situa-
tions (namely two different kinds of discussion) as
if they were the same. In order to avoid this kind
of inconsistency, a decision of the analyst is neces-
sary. One solution (Figure 6) is to use class special-
isation and create a sub-class for each type of dis-
cussion (Review Discussion and Acceptance Dis-
cussion) that is associated to each different part,
and a super-class Discussion that is associated to
the common parts.

4.3. Discussion

This is a modelling and a methodological prob-
lem. We followed an iterative process. That is,
we pushed common elements in fragments associ-
ated to features higher in the feature tree when they
were identified in several fragments. Conversely,
we decided that common elements were shared
down the feature tree following the feature decom-
position relation in FDs. However, a single class
can appear in several fragments. When it is con-
currently modified, the status of the modifications
is unclear. It can represent an undetected common-
ality or require a refactoring in several fragments
if the concepts are actually different. For example,
the Discussion Facility feature was identified early
on as a common feature, but when the two differ-
ent types of discussion were later modelled, this
feature had to decomposed and the fragments asso-
ciated to three features had to be modified to avoid
confusion during the merging operation if the two
discussion features were selected.

One of the proposed solutions is to use an inte-
grated meta-model that blends feature models and
base models. It allows to support feature-aware
modelling and change propagation, because each
model element can be annotated with the feature
to which it pertains. Bachmann et al. [16] have
suggested an integrated meta-model that can better
support this approach. Such model can also sim-
plify the merging algorithm, as Brunet et al. [12]
noted. The general problem of detecting common
concepts between static models is not new, how-
ever. It has been extensively studied in the case of
database schema integration [17, 18]. It is also pos-
sible to detect this problem earlier by performing a
partial merge of model fragments, preferably auto-
matically, in a way similar to Sabetzadeh et al. [9].

5. Challenge 2: when variability notation is
necessary in base diagrams

5.1. Context: variation points in base models

A model fragment can be incomplete before
the feature model is configured because some
model elements depend on specific configuration,

VaMoS'09

132

Programme
Chair

Review Board

Programme
Committee

Reviewer

1 1

1

*

*

1

1

chairs

oversees

?

Single PC 1

One PC per Track 1...*

Figure 7. Review Board Class Diagram Frag-
ment

i.e. the selection of certain features. Therefore,
variability has to be explicitly modelled in base
models, to be later resolved when the product
model is generated by merging. More generally,
some design decisions cannot be made a priori but
the information is known when a specific product
is built.

5.2. An instance

For example, the fragment associated with the
Review Board feature is represented in Figure 7.
We had to annotate it because a multiplicity was
undefined. The multiplicity of the association
oversees between the classes Review Board and
Programme Committee can vary. This is because it
depends on the selection of another feature: one of
the two mutually exclusive decompositions of the
Tracks feature.

5.3. Discussion

Some variability notation is necessary to in-
dicate a decision point in the model, particularly
when modelling an optional feature. UML is eas-
ily extensible and such information can be repre-
sented by UML comments. However, this solu-
tion seems to be impractical when the size of the
product family increases. The major requirement
is for this variability notation to be easily stored,
retrieved and interpreted by software during mod-
elling and merging. Several authors have identified
this problem.

Pohl et al. [2] do not propose a general tech-

nique but use ad-hoc textual or graphical nota-
tions when necessary. Gomaa [19] uses UML
stereotypes and parameters to annotate common el-
ements and variability in diagrams. Those tech-
niques are not specific to the approach studied here
and are not formally defined to enable automation.
Czarnecki et al. [7] propose an elegant solution: to
attach to certain base model elements a formally
defined presence condition expressed in terms of
features (selected or not). This approach scatters
product family variability information throughout
the fragments and risks to defeat the purpose of a
separate feature model, although this risk can be
mitigated by a good visualisation tool.

6. Challenge 3: to what feature does a frag-
ment belong?

6.1. Context: identification of atomic sets

When modelling a particular feature, the ques-
tion of what is exactly modelled surfaces fre-
quently. A specific feature with a well defined
boundary within the system is easy, but other fea-
tures are more cross-cutting by nature and the exact
impact on the overall system is harder to define. In
numerous occasions during the experiment, the au-
thors wanted to be able to share a common model
element between fragments, or modify a common
element and specialise it. Other fragments were
obviously associated to a set of features instead of
a single one. Finally some features were more eas-
ily modelled in conjunction with others.

6.2. Instance

When a commonality is identified between
features that represent a decomposition of a parent
feature, the common elements were “pushed up”
in the feature tree in the parent feature model frag-
ment. An atomic set [20, 21] is a set of features that
always appear together in a product. For example,
in Figure 8 the atomic set composed of Review, PC
Organisation, Tracks, Reviewing Process and Ac-
ceptance is highlighted. It represents the core of
the ConfMS application, so that when a common
model element belongs to one of its features, it is
in fact added to the model fragment associated with

VaMoS'09

133

the whole atomic set.
Another notable group of features in Figure 8

is related to the Discussion Facility feature. As
seen in Section 4, it is easier to model it in conjunc-
tion with the two features that require it. Although
they do not form an atomic set, it is actually easier
to include them in the scope of the model fragment
associated with Discussion Facility.

6.3. Discussion

To alleviate this problem, and because the size
of the domain model was moderate, we iteratively
checked each completed fragment with the others,
and tried to merge it to detect possible inconsis-
tencies in advance. This solution, if not directly
related to SPLE, was inspired by [9]. But the mod-
elling of fragments also had an impact on the fea-
ture model: the discovery of possible ambiguity
led to the modification of the FD and to reconsider
the commonality of the product line, such as with
the Discussion feature. These questions are mainly
methodological and, although related to other do-
main modelling problems, specific to the merging
approach. As far as we could observe, they are not
yet covered in the literature. Concerning the merg-
ing algorithm, if model fragments are associated
to sets of features instead of individual features,
it will decrease the computational complexity for
this, as well as for other automations (e.g. genera-
tion of all products or checking satisfiability).

7. Towards tool support

From the three challenges presented above, we
can list several functionalities that would signifi-
cantly improve the modelling of model fragments
in a CASE tool supporting the approach: (1) an in-
tegrated meta-model encompassing feature model
and base models; (2) the possibility to associate
variability information in the form of presence con-
ditions (boolean expressions on features) to every
model element; (3) the identification of atomic sets
and common features; (4) the possibility to as-
sociate model fragments to atomic sets and com-
mon features; (5) the sharing of common model
elements in the relevant model fragments; (6) the

specialisation of common elements into feature-
specific fragments; (7) conversely, the factorisation
(up in the feature tree) of common model elements
identified along the modelling process; (8) an ad-
vanced visualisation engine that can selectively
display the fragments associated to some features
and the condition in which these fragments will ap-
pear in a product.

Some functionalities would also improve the
merging operation: (1) a formally defined and
machine-readable presence condition language;
(2) traceability information between features and
model elements; (3) a partial merge algorithm to
detect common model elements or possible merg-
ing inconsistencies in advance.

8. General discussion

There are several threats to the validity of this
study: the size of the example is moderate and
some problems that would appear in bigger mod-
els may not be noticeable here; the experiment
was performed manually (except for generic dia-
gramming tools) due to the lack of a proper inte-
grated tool supporting the approach. Although the
researchers who carried out the experiment were
trained in modelling with FD and class diagrams,
this was the first time they used those languages
in an integrated fashion. Hence, some challenges
might have been emphasised by their lack of ex-
perience. However, such challenges would still be
valuable to pinpoint because they highlight issues
to be addressed when training new modellers to
this integrated way of modelling. These challenges
are likely to remain relevant for bigger products
and families, due to the increased complexity of
the modelling process execution (more products)
and of the products themselves (more features).

The problems we have identified can be classi-
fied in three categories: (1) semantic, (2) method-
ological and (3) practical problems. The first cat-
egory comes from the particular status of model
fragments. They can express a limited amount
of information, be incomplete, or even be syntac-
tically incorrect and therefore, strictly speaking,
meaningless but have an impact on the semantics
of a product. The second category comes from

VaMoS'09

134

Review

PC
Organisation

Reviewing
Process

Review
Discussion

Review
Board

Tracks

Single PC
One PC per

Track

Delegation

One Step

Two Steps

Rebuttal

Discussion
Facility

By PCC

Of PCOf RB

Meeting Electronic

By
Discussion

{1..2}

«requires»

«requires»

«requires»

Acceptance

Figure 8. An atomic feature set in the Conference Management Set

the iterative and distributed nature of the process.
Although feature modelling supports the separa-
tion of concerns, some synchronisation between
the different model fragments is necessary from
time to time, which requires to keep a view on the
whole system and all of its variants, or locally on
some set of features, which helps to inform par-
ticular design decisions. Finally, better tool sup-
port is necessary to ensure that the model frag-
ments remain syntactically and semantically con-
sistent with each other.

There are also advantages to such a merging
approach. The ability to work on a subset of the
features reduces the complexity of the problem, es-
pecially if it is highly decomposable, that is when
features are interacting through a small and pre-
cisely defined interface. This approach can be par-
tially supported by a tool. For static aspects, a
simple name matching algorithm appears to cover
most needs.

9. Conclusion & future works

We have reported three challenges that we
faced during a modelling experiment. The first
challenge was the lack of methodology to ease the
co-evolution of model fragments, when common

model elements are identified and factored, or a
new understanding of the domain requires to spe-
cialise a common model element in different ways.
The second challenge was the lack of variability
notation in base models and the difficulty to sep-
arate the variability information from the domain
model. The third challenge was difficulty to define
the scope of a model fragment, that is to determine
what set of features it describes. From this exper-
iment, requirements for a better tool support were
suggested.

In the future, we intend to compare the merg-
ing approach with the pruning approach. We also
want to extend this experiment to the dynamic (be-
havioural) aspects of the base models. Finally, we
hope to improve tool support by implementing the
suggested functionalities and provide methodolog-
ical guidelines.

Acknowledgements

The research reported here was partly funded
by the MoVES Interuniversity Attraction Poles
Programme, Belgium – Belgian Science Policy.

This work was also funded in part by the Ac-
tions de Recherche Concertées - Ministère de la
Communauté française - Direction générale de

VaMoS'09

135

l’Enseignement non obligatoire et de la Recherche
scientifique.

References

[1] P. C. Clements and L. Northrop, A Framework for Soft-
ware Product Line Practice - Version 4.2. Pittsburgh,
USA: Carnegie Mellon, Software Engineering Institute,
2003.

[2] K. Pohl, G. Bockle, and F. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, July 2005.

[3] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Fea-
ture Diagrams: A Survey and a Formal Semantics,” in
Proc. of the 14th IEEE International Requirements En-
gineering Conference RE’06. Los Alamitos, CA, USA:
IEEE Computer Society, 2006, pp. 136–145.

[4] J.-C. Trigaux, “Quality of feature diagram languages:
Formal evaluation and comparison,” Ph.D. dissertation,
University of Namur, Faculty of Computer Science,
September 2008.

[5] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained:
The Model Driven Architecture: Practice and Promise.
Boston, MA, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2003.

[6] F. Gottschalk, W. M. van der Aalst, M. H.
Jansen-Vullers, and M. La Rosa, “Configurable
workflow models,” International Journal of Co-
operative Information Systems (IJCIS), vol. 17,
no. 2, pp. 177–221, June 2008. [Online]. Avail-
able: http://dx.doi.org/10.1142/S0218843008001798

[7] K. Czarnecki, “Mapping features to models: A
template approach based on superimposed variants,”
in GPCE’05, volume 3676 of LNCS, 2005, pp. 422–
437. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.88.6127

[8] B. Schätz, “Combining product lines and model-
based development,” Electronic Notes in Theo-
retical Computer Science, Jan 2007. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/
S1571066107003933

[9] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook,
and M. Chechik, “Consistency checking of concep-
tual models via model merging,” in Requirements
Engineering Conference, 2007. RE ’07. 15th IEEE
International, 2007, pp. 221–230. [Online]. Available:
http://dx.doi.org/10.1109/RE.2007.18

[10] M. Sabetzadeh, S. Nejati, S. Easterbrook, and
M. Chechik, “A relationship-driven framework for
model merging,” in MISE ’07: Proceedings of the Inter-
national Workshop on Modeling in Software Engineer-
ing. Washington, DC, USA: IEEE Computer Society,
2007, p. 2.

[11] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave, “Matching and merging of statecharts
specifications,” in Proceedings of the 29th International
Conference on Software Engineering, ICSE 2007, ser.

ICSE International Conference on Software Engineer-
ing, AT&T Laboratories-Research, Florham Park, NJ,
United States, 2007, pp. 54–63. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.50

[12] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati,
N. Niu, and M. Sabetzadeh, “A manifesto for model
merging,” in GaMMa ’06: Proceedings of the 2006 in-
ternational workshop on Global integrated model man-
agement. New York, NY, USA: ACM, 2006, pp. 5–12.

[13] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jézéquel,
“Reconciling automation and flexibility in product
derivation,” in Proceedings of the 12th International
Software Product Line Conference SPLC ’08, 2008,
pp. 339–348. [Online]. Available: http://dx.doi.org/10.
1109/SPLC.2008.38

[14] Institute of Electrical and Electronics Engineers, “IEEE
Conferences Organization Manual,” last accessed July
2006. [Online]. Available: http://www.ieee.org/web/
conferences/mom/all manual.html

[15] G. Saval, P. Heymans, P.-Y. Schobbens, R. Matulevičius,
and J.-C. Trigaux, “Experimenting with the Selection
of an Off-The-Shelf Conference Management System,”
Poster presented at the 1st Intl. Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS),
January 2007.

[16] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite,
R. L. Nord, K. Pohl, B. Ramesh, and A. Vilbig, “A
meta-model for representing variability in product fam-
ily development.” in Software Product-Family Engineer-
ing, 5th Int’l Workshop, PFE 2003, Siena, Italy, Novem-
ber 4-6, 2003, Revised Papers, ser. LNCS, vol. 3014.
Springer, 2003, pp. 66–80.

[17] C. Batini, M. Lenzerini, and S. B. Navathe, “A compar-
ative analysis of methodologies for database schema in-
tegration,” ACM Comput. Surv., vol. 18, no. 4, pp. 323–
364, 1986.

[18] E. Rahm and P. A. Bernstein, “A survey of approaches
to automatic schema matching,” The VLDB Journal,
vol. 10, no. 4, pp. 334–350, 2001.

[19] H. Gomaa, Designing Software Product Lines
with UML: From Use Cases to Pattern-
Based Software Architectures (The Addison-
Wesley Object Technology Series). Addison-
Wesley Professional, July 2004. [Online]. Avail-
able: http://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20\&path=ASIN/0201775956

[20] S. Segura, “Automated analysis of feature models using
atomic sets,” in Proceedings of the First Workshop on
Analyses of Software Product Lines ASPL, 2008.

[21] W. Zhang, H. Zhao, and H. Mei, “A propo-
sitional logic-based method for verification of
feature models,” in Formal Methods and Soft-
ware Engineering. Springer Berlin / Heidelberg,
2004, pp. 115–130. [Online]. Available: http:
//www.springerlink.com/content/fn47t2dwe26d3d3b

VaMoS'09

136

Benchmarking on the Automated Analyses of Feature Models:

A Preliminary Roadmap ∗

Sergio Segura and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

University of Seville
Av Reina Mercedes S/N, 41012 Sevilla, Spain

{sergiosegura, aruiz} AT us.es

Abstract

The automated analysis of Feature Models (FMs) is be-
coming a well-established discipline. New analysis opera-
tions, tools and techniques are rapidly proliferating in this
context. However, the lack of standard mechanisms to eval-
uate and compare the performance of different solutions is
starting to hinder the progress of this community. To ad-
dress this situation, we propose the creation of a benchmark
for the automated analyses of FMs. This benchmark would
enable the objective and repeatable comparison of tools and
techniques as well as promoting collaboration among the
members of the discipline. Creating a benchmark requires
a community to share a common view of the problem faced
and come to agreement about a number of issues related to
the design, distribution and usage of the benchmark. In this
paper, we take a first step toward that direction. In partic-
ular, we first describe the main issues to be addressed for
the successful development and maintenance of the bench-
mark. Then, we propose a preliminary research agenda set-
ting milestones and clarifying the types of contributions ex-
pected from the community.

1. Motivation

The automated analysis of feature models consists on
the computer–aided extraction of information from feature
models. This extraction is performed by means of analysis
operations. Typical operations of analysis allow finding out
whether a feature model is void (i.e. it represents no prod-
ucts), whether it contains errors (e.g. feature that cannot
be part of any products) or what is the number of products

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

of the software product line represented by the model. A
wide range of analysis operations and approaches to auto-
mate them have been reported [5, 7].

Recent workshops [6] and publications [8, 11, 19, 21,
25, 26] reflect an increasing concern to evaluate and com-
pare the performance of different solutions in the context of
automated analyses of feature models. However, the lack
of standard problems to perform these empirical tests of-
ten difficult getting rigorous conclusions widely accepted
by the community. Experiments in this context are mainly
ad-hoc and not public and subsequently not repeatable by
other researchers. Thus, performance conclusions are rarely
rigorous and verifiable. As a result, these conclusions
can barely be used to guide further research hindering the
progress of the different solutions and, in general, of the
whole discipline.

A benchmark is a test (a.k.a. test problem) or set of
tests used to compare the performance of alternative tools
or techniques [22]. Benchmarks have contributed to the
progress of many disciplines along the years providing a
level playing field for the objective and repeatable compar-
ison of solutions. From a technical standpoint, the usage of
benchmarks leads to a rigorous examination of performance
results. From these results, the strengths and weaknesses
of each proposal are highlighted helping researchers to im-
prove their solutions and identify new research directions.
From a social standpoint, benchmarks promote the collabo-
ration and communication among different researchers. As
a result, these become more aware of the work carried out
by their colleagues and collaborations among researchers
with similar interests emerge naturally.

Developing a benchmark for the automated analyses of
feature models could contribute to the progress of the dis-
cipline, both at the technical and the social level. This was
one of the main conclusions of the first workshop on Analy-
sis of Software Product Lines (ASPL, [6]). There, a number
of attendants agreed on the need for a benchmark (i.e. set

VaMoS'09

137

of standard feature models) to evaluate our solutions in rig-
orous and widely accepted way.

Creating a benchmark requires a community to share a
common view of the problem faced and come to agreement
about a number of issues related to the design, distribution
and usage of the benchmark. In this paper, we take a first
step toward that direction. In particular, we first describe the
main issues to be addressed for the successful development
and maintenance of the benchmark. Then, we propose a
preliminary research agenda setting milestones and clarify-
ing the types of contributions expected from the community.

The remainder of this paper is structured as follows. In
Section 2 we detail the open issues to be addressed for the
successful introduction of a benchmark in the community of
automated analyses of feature models. Section 3 presents a
preliminary research agenda for the development and main-
tenance of the benchmark. Finally, we summarize our con-
clusions in Section 4.

2. Open issues

We identify a number of open issues to be addressed for
the successful introduction of a benchmark in the commu-
nity of automated analyses of feature models. Next, we de-
scribe them.

2.1. Are we ready for it?

Sim et al. [22] draw attention to two preconditions
that should exist in order to be success when introducing
a benchmark into a research community.

The first precondition requires a minimum level of matu-
rity in the discipline. As evidence that this minimum level
has been reached, a sufficient number of different propos-
als to be evaluated using the benchmarks should be already
available. This would provide some guarantee of the fu-
ture interest of the community in the benchmark. This is
a relevant condition since the effort needed to introduce a
benchmark into a discipline is significant [17, 22, 24]. The
community should have a strong commitment to participate
actively on its development and maintenance, e.g. propos-
ing new test problems regularly.

The second precondition point out the need for an ac-
tive collaboration among researchers. These should be well-
disposed to work together to solve common problems. Ac-
cording to Sim, these collaborations help researchers to gain
familiarity and experience creating a community more re-
ceptive to the results and consequently more likely to use
the benchmark. Some evidences of the willingness to col-
laborate may be deduced from previous collaboration be-
tween the members of the community, e.g. multi-author
publications.

A number of evidences suggest that these two conditions
already exist in the domain of automated analyses of feature
models. In the context of maturity, existing surveys [5, 7]
reflect that a sufficient number of proposals to be evaluated
using the benchmark are already available. Additionally,
an increasing concern to evaluate and compare the perfor-
mance of tools and techniques is detected in recent publica-
tions [8, 11, 19, 21, 25, 26]. In the context of collaboration,
recent workshops [6] and multi-authors publications such
as [4] or [25] (best paper award at SPLC’08) also suggest
that the community is ready to incur in the development of a
benchmark. Despite this, we consider that the introduction
of a benchmark must be still further debated by the commu-
nity in order to find out the level of interest and commitment
of its members to participate on it.

2.2. Agreeing a format

Reaching a consensus on a language to specify test prob-
lems is a key point for a benchmark being accepted by the
community. To this end, the semantic, abstract and concrete
syntax of the language should be carefully studied. The se-
mantic should be well defined to avoid ambiguity and re-
dundancies in the specification of the problems. The ab-
stract syntax should be flexible enough to enable the usage
of the benchmark with tools and techniques using different
notations. Finally, the concrete syntax should be as simple
as possible to simplify its understanding and manipulation.

For the semantic and abstract syntax of the language,
an overview of the available papers surveying feature mod-
elling notations would be desirable. A good starting point
could be the work of Schobbens et al. [20]. In their work,
the authors survey a number of feature diagram notations
and study some of their formal properties. As a result,
they propose a new feature diagram language, VFDs (Var-
ied Feature Diagrams), embedding all other variants.

For the concrete syntax, that is, the specific format used
to represent and distribute the problems, we foresee two
main options: plain text and XML. These appear to be
the most popular input formats used in the existing feature
model analyses tools. An example of tool using plain text
is the Ahead Tool Suite1 in which feature models are rep-
resented as grammars. Some examples of tools using XML
are the Feature Model Plug-in2, the FAMA framework3 and
Pure::Variants4. For the selection of one format or another,
advantages and drawbacks of each option should be evalu-
ated and debated. On the one hand, plain text formats tend
to be shorter than XML documents and usually more suit-
able to be written by human beings. On the other hand,

1http://www.cs.utexas.edu/users/schwartz/ATS.html
2http://gp.uwaterloo.ca/fmp/
3http://www.isa.us.es/fama/
4http://www.pure-systems.com/

VaMoS'09

138

XML is a widely extended mechanism to exchange infor-
mation easy to be defined (e.g. XML schema) and parsed.

A review of the formats used in related software bench-
marks could also be helpful to support a decision. In a
first outlook to these benchmarks we noticed that plain text
seems to be the preferred format especially on those bench-
marks related to mathematical problems. Some examples
are the DIMACS CNF format [1] for satisfiability problems,
the MPS format [2] for linear programming or the AMPLE
format [10] for linear and nonlinear optimization problems.
We also found some related benchmark dealing with XML
format such as GXL [12], introduced in the context of re-
verse engineering, or XCSP [3] for constraint programming.

Finally, feature modelling community could also benefit
from the lessons learned in other domains when selecting
a format. We found in XCSP an interesting case of this.
In the current version of the format (i.e. 2.1), released in
January 2008 for the Third International CSP Solver Com-
petition5, the authors felt the need to distinguish between
two variants of the format: a ’fully-tagged’ representation
and a ’abridged’ one. According to the authors, the tagged
notation is ’suitable for using generic XML tools but is more
verbose and more tedious to write for a human being’ mean-
while the abridged notation ’is easier to read and write for
a human being, but less suitable for generic XML tools’. As
a negative consequence of this, authors of XCSP must now
provide up-to-date support for two different formats which
include updating documentation, parsers, tools to convert
from one representation to another, etc. Studying the syner-
gies between XCSP and our future benchmark format could
help us to predict whether we could find the same problem
using XML. Reporting similar lessons learned in other do-
mains would be highly desirable for supporting a decision.

2.3. Selection of test problems

The design of test problems is recognized as one of the
most difficult and controversial steps during the develop-
ment of a benchmark [22, 24]. Walter Tichy advises:

’The most subjective and therefore weakest
part of a benchmark test is the benchmark’s
composition. Everything else, if properly docu-
mented, can be checked by the skeptic. Hence,
benchmark composition is always hotly debated.’
[24] (page 36)

These test problems should be representative of the real
problems to be solved by the tool or technique under test.
As discussed in [9, 14], there are essentially three sources
of test problems: those which arise in real scenarios, those
that are specifically developed to exercise a particular aspect

5http://cpai.ucc.ie/

of the tool or technique under test and randomly generated
ones. There is not a consensus about the criteria for the se-
lection of one type or another [14]. In practice, researchers
from different research disciplines usually adopt a pattern
of use. There exist well-documented deficiencies of each
alternative. In the case of specific collection of problems,
Jackson et al. [14] summarizes them as follows:

• The test set is usually small compared whit the total set
of potential test problems.

• The problems are commonly small and regular. There
may exist large-scale problems but they are often not
distributed because it is difficult and time-consuming.

• Problems may have similar properties. As a result of
this, some of the features of the tool or technique could
be not exercised.

• Optimizing a technique or tool for a set of test prob-
lems may not provide ideal performance in other set-
tings.

Randomly generated problems overcome some of the
drawbacks detailed previously but also attract other nega-
tive opinions. In particular, these critics focus on the lack of
realism of those problems and the systematic structures that
sometimes may appear on them.

Two main types of problems are reported in the context
of feature models: invented and randomly generated ones.
One the one hand, invented feature models are usually small
and regular. They are used for research purposes but they
rarely can be used to showcase the performance of a tool or
technique. On the other hand, randomly generated ones are
more adequate to check the performance of tools but they do
not represent real problems and rarely can be replicated by
other researchers. There exist references in the literature to
software product lines with thousand of features [23] (page
32) but to the best of our knowledge associated feature mod-
els are not available. We presume this may due to the effort
required to distribute them or to confidentiality issues.

Different types of contribution would be welcome by the
community of automated analyses of feature models in the
context of a benchmark. Firstly, feature models from real
scenarios are highly desirable to both studying their prop-
erties and using them as motivating inputs for the tools
and techniques under evaluation. Notice that these feature
models could include not only feature models from indus-
try but also feature models extracted from OS projects (e.g.
[13, 16]). Secondly, collection of problems published in the
literature would be helpful since they represent widely ac-
cepted problems by the community. Finally, random feature
models will be needed to evaluate the performance of tools
and techniques dealing with large-scale problems. Regard-
less the type of problem proposed, this should be clearly

VaMoS'09

139

justified by stating what characteristics make it a good test
problem and what it is hoped to learn as a result of running
it.

2.4. Benchmark development

The key principle underlying the benchmark develop-
ment is that it must be a community effort [22, 24]. Mem-
bers of the discipline should participate actively in the de-
velopment and maintenance of the benchmark through a
number of tasks. Some of these are:

• Agreeing a format for the test problems.

• Design and publication of test problems.

• Usage of the benchmark and publication of results.

• Regular submission of new test problems.

• Report errors or possible improvements in the format
or existing test problems.

Note that continued evolution of the benchmark is re-
quired to prevent users from optimizing their tools or tech-
niques for a specific set of test problems.

Based on their experience, Sim et al. [22] attributes the
success of a benchmark development process to three fac-
tors, namely:

• ’The effort must be lead by a small number of champi-
ons’. This small group of people should be responsi-
ble of keeping the project alive and will be commonly
in charge of organizing and coordinating activities to
promote discussion among the members of the com-
munity.

• ’Design decisions for the benchmark need to be sup-
ported by laboratory work’. Some experiments may
be needed to show the effectiveness of a solution and
to support decisions.

• ’The benchmark must be developed by consensus’. To
this end, it is necessary to promote the discussion of
the members of the community in many formats as
possible. Some options are workshops, conferences,
mailing lists, discussion forums, Request for Com-
ments (RFC), etc. In this context, Sim point at face-
to-face meeting in conferences and workshops as the
most effective method.

For the successful development of a benchmark, com-
munity should be aware of how they can contribute. To this
end, detailed information about the different tasks to be car-
ried out and the effort required for each of them would be
highly desirable. This paper pretend to be a first contribu-
tion in that direction (see Section 3).

2.5. Support infrastructure

Successful benchmarks are commonly provided together
with a set of tools and mechanism to support its usage and
improvement. Some examples are mailing list to enable
discussion among users, test problems generators, parsers,
documentation, etc. These contributions are welcome at any
time but they are especially appealing during the release of
the benchmark in order to promote its usage within the com-
munity. Participating at this level may required an important
effort from the community but it also may appear as good
opportunity to come in contact with other researchers work-
ing in similar topics.

Contributions from the community of feature models in
any of these forms (i.e. generators, parsers, etc.) will be
greatly welcome.

2.6. Using the benchmark

Performing experiments and reporting its results is not a
trivial task. The analysis, presentation and interpretation of
these results should be rigorous in order to be widely ac-
cepted by the community. To assist in this process, a num-
ber of guidelines for reporting empirical results are avail-
able in the literature. Some good examples can be found
in the areas of mathematical software [9, 14] and software
engineering [15, 18].

At the analysis level, aspects such as the statistic mech-
anisms used, the treatment of outliers or the application of
quality control procedures to verify the results should be
carefully studied.

A number of considerations should also be taken into
account when presenting results. As an example, Kitchen-
ham et al. [18] suggest a number of general recommen-
dations in the context of experiments in software engineer-
ing. These include providing appropriate descriptive statis-
tics (e.g. present numerator and denominator for percent-
ages) or making a good usage of graphics (e.g. avoid using
pie charts).

Finally, the interpretation of results should also follow
some well-defined criteria and address different aspects.
These may include describing inferences drawn from the
data to more general conditions and limitations of the study.

Contributions for the correct usage of the benchmark in
the context of automated analyses of feature models would
be helpful. These may include guidelines and recommenda-
tions about how to get (e.g. useful measures), analyse (e.g.
adequate statistics packages), present (e.g. suitable graphs)
and interpret (e.g. predictive models) the benchmark re-
sults.

VaMoS'09

140

3. Preliminary roadmap

Based on the open issues introduced in previous sections,
we propose a preliminary roadmap for the development of
a benchmark for the automated analyses of feature models.
In particular, we first clarify the types of contributions ex-
pected from the community. Then, we propose a research
agenda.

3.1. Types of contributors

The main goal of this section is to clarify the ways in
which the community can contribute to the development
and usage of the benchmark. To this end, we propose di-
viding up the members of the discipline interested in the
benchmark into three groups according to their level of in-
volvement in it, namely:

• Users. This group will be composed of the members of
the discipline interested exclusively in the usage of the
benchmark and the publication of performance results.
Exceptionally, they will also inform about bugs in the
test problems and tools related to the benchmark.

• Developers. This group will be composed of members
of the community interested in collaborating in the de-
velopment of the benchmark. In addition to the tasks
expected from users, the contributions from this group
include:

– Designing and maintaining new test problems
– Proposing guidelines and recommendations for

an appropriate usage of the benchmark.
– Developing tools and/or documentation, e.g. test

problem generators.

• Administrators. These will be the ’champions’ in
charge of most part of the work. This group will be
composed of a few researchers from one or more labo-
ratories. In addition to the tasks associated to the users
and developers, the contributions expected from this
group include:

– Organizing and coordinating activities to pro-
mote discussion (e.g. performance competi-
tions).

– Proposing a format to be accepted by the com-
munity.

– Publication of test problems.
– Setting mechanisms to promote contributions

from the community, e.g. template for submit-
ting new test problems

3.2. Research agenda

We identify a number of tasks to be carried out for the
development and maintenance of a successful benchmark
for the automated analyses of feature models. Figure 1 de-
picts a simplified process model illustrating these tasks us-
ing BPMN6 notation. Rectangles depict tasks (T-X) and
diamond shapes represent decisions (D-X). For the sake of
simplicity, we distinguish tree group of tasks: those carried
out by the community (i.e. administrators, developers and
users of the benchmark), those performed by the adminis-
trators and those tasks accomplished by both administrators
and developers.

As a preliminary step, community of automated analyses
of feature models should evaluate whether we are ready to
incur in the development of a benchmark (T-01). As dis-
cussed in Section 2.1, we consider this discipline is mature
enough and has the necessary culture of collaboration to
start working on it. However, we still consider that a no-
ticeable interest from the members of the discipline to par-
ticipate either in the development or the usage of the bench-
mark should be detected. If this precondition is not met
(D-01), it does not mean the benchmark cannot be used.
Rather, it means that some actions should be then carried
out to establish this precondition. In this context, Sim sug-
gests waiting for more research results and planning activi-
ties to promote collaboration among researchers (T-02).

Once the community agrees on the need for a bench-
mark, the design of a format for the test problems should
be the first step (T-03). This should be proposed by the ad-
ministrators and approved by a substantial part of the com-
munity (D-02). It should be presented in a standard format
such a technical report and include a versioning system to
keep record of its evolution. Note that several attempts (i.e.
versions) could be needed until reaching a wide consensus.

Once an accepted format is available, an initial set of
test problems (T-04) and support tools (T-05) should be re-
leased by administrators. At the very least, we consider
these should include a parser for the test problems and plat-
form to publish the material related to the benchmark (e.g.
FTP site). At this point, the benchmark would already be
fully usable.

Finally, a number of contributions from the community
for the maintenance and improvement of the benchmark
would be expected. These include i) Using the benchmark
and publishing the results (T-06), ii) Reporting bug and sug-
gestions (T-07), iii) Organizing activities to promote dis-
cussion among the members of the community (T-08), iv)
Proposing new test problems (T-09), v) Developing tools
and documentation (T-10), and vi) Providing guidelines and
recommendations for an appropriate usage of the bench-
mark (T-11).

6http://www.bpmn.org/

VaMoS'09

141

D-01:
Are we
ready?

D-02:
Consensus?

T-04: Develop
initial set of

test problems

T-05: Develop
initial support
infrastructure

T-06: Use the benchmark
and publish results

T-09: Propose new test
problems

T-10: Develop tools and
documentation

T-11: Propose guidelines
and recommendations for

using the benchmark

T-07: Report bugs and
suggestions

T-03: Propose
a format

T-01: Evaluate whether the
community of automated

analyses of FMs is ready for
a benchmark

NoYes

C
om

m
un

ity
(A

dm
in

is
tra

to
rs

 +
 D

ev
el

op
er

s
+

U
se

rs
)

A
dm

in
is

tr
at

or
s

A
dm

in
is

tr
at

or
s

+
D

ev
el

op
er

s

No

Yes

T-08: Organize activities
to promote discussion

T-02: Wait for research
results and more

opportunities to discuss.

Figure 1. A process model of the proposed research agenda

4. Conclusions

The introduction of a benchmark for the automated anal-
yses of feature models could contribute to the progress of
the discipline by providing a set of standard mechanisms
for the objective and repeatable comparison of solutions. A
key principle underlying the creation a benchmark is that
it must be a community effort developed by consensus. To
this end, members of the discipline should first share a com-
mon view of the problem faced and the tasks to be carried
out for its development. This is the main contribution of
this paper. In particular, we first described the open issues
to be addressed for the successful introduction of a bench-
mark for the automated analyses of feature models. Then,
we proposed a preliminary roadmap clarifying the types of
contributions expected from the community and the main
steps to be taken. To the best of knowledge, this is the first
contribution in the context of benchmarking on the auto-
mated analyses of feature models.

Acknowledgments

We would like to thank Dr. David Benavides whose use-
ful comments and suggestions helped us to improve the pa-
per substantially.

References

[1] DIMACS Conjunctive Normal Form
format (CNF format). Online at
http://www.satlib.org/Benchmarks/SAT/satformat.ps.

[2] Mathematical Programming System (MPS format).
Online at http://lpsolve.sourceforge.net/5.5/mps-
format.htm.

[3] XML Representation of Constraint Networks For-
mat XCSP 2.1. Online at http://www.cril.univ-
artois.fr/CPAI08/XCSP2 1.pdf.

[4] D. Batory, D. Benavides, and A. Ruiz-Cortés. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM, December:45–47, 2006.

[5] D. Benavides. On the Automated Analyisis of Software
Product Lines using Feature Models. A Framework for
Developing Automated Tool Support. PhD thesis, Uni-
versity of Seville, 2007.

[6] D. Benavides, A. Ruiz-Cortés, D. Batory, and P. Hey-
mans. First International Workshop on Analyses of
Software Product Lines (ASPL’08), September 2008.
Limerick, Ireland.

VaMoS'09

142

[7] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feture
models. In Jornadas de Ingenierı́a del Software y
Bases de Datos (JISBD), 2006.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. A first step towards a framework for the auto-
mated analysis of feature models. In Managing Vari-
ability for Software Product Lines: Working With Vari-
ability Mechanisms, 2006.

[9] H. Crowder, R.S. Dembo, and J.M. Mulvey. On re-
porting computational experiments with mathematical
software. ACM Transactions on Mathematical Soft-
ware, 5(2):193–203, 1979.

[10] R. Fourer, D.M. Gay, and B.W. Kernighan. A mod-
eling language for mathematical programming. Man-
agement Science, 36(5):519–554, 1990.

[11] A. Hemakumar. Finding contradictions in feature
models. In First Workshop on Analyses of Software
Product Lines (ASPL 2008). SPLC’08, Limerick, Ire-
land, September 2008.

[12] R.C. Holt, A. Winter, and A. Schürr. GXL: Toward a
Standard Exchange Format. In WCRE ’00: Proceed-
ings of the Seventh Working Conference on Reverse
Engineering (WCRE’00), page 162, Washington, DC,
USA, 2000. IEEE Computer Society.

[13] A. Hubaux, P. Heymans, and D. Benavides. Vari-
ability modelling challenges from the trenches of an
open source product line re-engineering project. In
Proceedings of the Sofware Product Line Conference,
pages 55–64, 2008.

[14] R.H. Jackson, P.T. Boggs, S.G. Nash, and S. Powell.
Guidelines for reporting results of computational ex-
periments. report of the ad hoc committee. Mathemat-
ical Programming, 49(1):413–425, November 1990.

[15] A. Jedlitschka and D. Pfahl. Reporting guidelines for
controlled experiments in software engineering. In
Empirical Software Engineering, 2005. 2005 Interna-
tional Symposium on, pages 10 pp.+, 2005.

[16] C. Kastner, S. Apel, and D. Batory. A case study im-
plementing features using aspectj. In SPLC ’07: Pro-
ceedings of the 11th International Software Product
Line Conference, pages 223–232, Washington, DC,
USA, 2007. IEEE Computer Society.

[17] B.A. Kitchenham. Evaluating software engineering
methods and tool. Part 1 to 12. ACM SIGSOFT Soft-
ware Engineering Notes, 21-23(1), 1996-1998.

[18] B.A Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W.
Jones, D.C. Hoaglin, K.E. Emam, and J. Rosenberg.
Preliminary guidelines for empirical research in soft-
ware engineering. IEEE Transaction on Software En-
gineering, 28(8):721–734, August 2002.

[19] M. Mendonca, A. Wasowski, K. Czarnecki, and
D. Cowan. Efficient compilation techniques for large
scale feature models. In GPCE ’08: Proceedings of
the 7th international conference on Generative pro-
gramming and component engineering, pages 13–22,
New York, NY, USA, 2008. ACM.

[20] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bon-
temps. Generic semantics of feature diagrams. Com-
puter Networks, 51(2):456–479, Feb 2006.

[21] S. Segura. Automated analysis of feature models us-
ing atomic sets. In First Workshop on Analyses of
Software Product Lines (ASPL 2008). SPLC’08, pages
201–207, Limerick, Ireland, September 2008.

[22] S.E. Sim, S. Easterbrook, and R.C. Holt. Using bench-
marking to advance research: a challenge to soft-
ware engineering. In ICSE ’03: Proceedings of the
25th International Conference on Software Engineer-
ing, pages 74–83, Washington, DC, USA, 2003. IEEE
Computer Society.

[23] V. Sugumaran, S. Park, and K. Kang. Software prod-
uct line engineering. Commun. ACM, 49(12):28–32,
2006.

[24] W.F. Tichy. Should computer scientists experiment
more? Computer, 31(5):32–40, 1998.

[25] J. White, D. Schmidt, D. Benavides P. Trinidad, and
Ruiz-Cortés. Automated diagnosis of product-line
configuration errors in feature models. In Proceed-
ings of the 12th Sofware Product Line Conference
(SPLC’08), Limerick, Ireland, September 2008.

[26] J. White and D.C. Schmidt. Filtered cartesian flat-
tening: An approximation technique for optimally se-
lecting features while adhering to resource constraints.
In First International Workshop on Analyses of Soft-
ware Product Lines (at SPLC’08), Limerick, Ireland,
September 2008.

VaMoS'09

143

VaMoS'09

144

Abductive Reasoning and Automated Analysis of Feature Models: How are they
connected?∗

Pablo Trinidad, Antonio Ruiz–Cortés
Dpto. Lenguajes y Sistemas Informáticos

University of Seville
{ptrinidad,aruiz} at us.es

Abstract

In the automated analysis of feature models (AAFM),
many operations have been defined to extract relevant in-
formation to be used on decision making. Most of the pro-
posals rely on logics to give solution to different operations.
This extraction of knowledge using logics is known as de-
ductive reasoning. One of the most useful operations are
explanations that provide the reasons why some other oper-
ations find no solution. However, explanations do not use
deductive but abductive reasoning, a kind of reasoning that
allows to obtain conjectures why things happen. As a first
contribution we differentiate between deductive and abduc-
tive reasoning and show how this difference affect to AAFM.
Secondly, we broaden the concept of explanations relying
on abductive reasoning, applying them even when we ob-
tain a positive response from other operations. Lastly, we
propose a catalog of operations that use abduction to pro-
vide useful information.

1. Introduction

The automated analysis of feature models (AAFM) in-
tends to extract relevant information from feature models
(FM) to assist on decision making and even to produce de-
sign models or code. The general process that most of the
works propose to deal with automated analysis is transform-
ing a FM into a logic paradigm and solving declaratively the
problem. We have noticed that most of the proposed oper-
ations use deductive reasoning techniques to extract such
an information. The way deductive reasoning works is ob-
taining objective conclusions from its knowledge base (KB)
making explicit an implicit information.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and by the Andalusian Government under project IS-
ABEL (TIC-2533).

But in some situations, it may be interesting not only ob-
taining conclusions but knowing the reasons why that con-
clusion is inferred. For example, if we find an error in a
FM such as a dead feature we must be interested in the re-
lationships that make this error appearing. So we can use
this information to assist on error repairing. In case we are
searching for the cheapest product to be produced in a fam-
ily and we obtain a specific product, we may be searching
for the relationships and criteria that have been taken into
account. This transverse operation is commonly known in
FM analysis community as explanation and may be used in
conjunction with any deductive operation.

These two examples, remarks the automated analysis as
a two-step process, where an information is extracted from
a FM firstly by means of deductive reasoning, and just in
case we are interested in obtaining further information, we
may ask for the reasons why we have obtained such an in-
formation using abductive reasoning. As a first contribution
of this paper we remark this difference, distinguishing be-
tween two kinds of operations: deductive operations, that
use deductive reasoning to reach for a result; and explana-
tory or abductive operations, which use abductive reasoning
to explain a result obtained from a deductive operation (see
Figure 1). As a consequence, we have observed that most
of the proposed operations in automated analysis are de-
ductive operations, and abductive operations have only been
proposed to solve particular problems such as obtaining ex-
planations for void FMs and dead features. Therefore, and
as a second contribution, we propose a catalog of abductive
operations that broadens their field of action to be applied
to the results of any deductive operation.

One of the main contributions in [2] is proposing a gen-
eral transformation from a FM into many logic paradigm
or solver such as Constraint Satisfaction Problems (CSP),
satisfiability problems or Binary Decision Diagrams(BDD)
by means of a formal description of the problem in the so
called FAMA Theoretical Framework. However, his pro-
posal was centered in deductive reasoning and explanations
were proposed as an operation that did not fit into his de-

VaMoS'09

145

�������	�

�������

����� �������	�

�������

����������
����������

��������� ��������

!���"����#����

Figure 1. The Link between Deductive and
Abductive Reasoning

ductive framework so solving them was considered to be an
open issue. Now we know that explanations may never fit
into his deductive framework as it is an abductive operation.
However, we envision that we may follow the same struc-
ture than Benavides’ FAMA Theoretical Framework for ab-
ductive operations so the problem may be represented in a
theoretical level so several solvers and logic paradigms may
be used to solve them. Therefore, as a last contribution,
we envision how some of the current proposals in abductive
reasoning may fit into such a framework and which are the
solvers, techniques or algorithms that can be used to deal
with abductive operations.

This paper is structured as follows: In Section 2 we
briefly present a study of the works in the automated analy-
sis of FM from the point of view of deductive and abductive
reasoning. In Section 3, we introduce the concept of abduc-
tive reasoning more in depth, pointing out its relationship
with diagnosis problems. The catalog of abductive opera-
tions is presented in Section 4. We envision the future works
and research lines, exposing some conclusions in Section 5.

2 Background

2.1 Analysis of Feature Models

The automated analysis of FMs intends to extract rele-
vant information from FMs to assist decision making during
SPL development. To obtain such an information, many au-
thors have proposed different operations for products count-
ing, filtering, searching and error detecting that are summa-
rized in a survey in [4]. Most of the proposals rely on declar-
ative techniques and logics to extract information such as
Constraint Satisfaction Problems (CSP) [3], SAT solvers [7]
and Binary Decision Diagrams (BDD)[5].

In the works where logics are used to give a response
to those operations, they use a common way of reasoning
called deduction. Informally speaking, Deduction makes
explicit an implicit information in a theory. It means that the
only information that may be extracted from a model is the
one that is modeled, and what we are doing when reasoning
deductively about a FM is making explicit a hard-to-see in-
formation. For example, if we select feature A in the FM in
Figure 2, deductive reasoning may reach the conclusion that

feature C may not be selected. If we select features A and
C deduction is only able to determine that there is no possi-
ble configuration containing both features at the same time.
If we want to explain the reason why A and C are mutually
exclusive, deductive reasoning is not the right choice.

2.2 Explanations in Feature Models

The need of explanations were firstly detected by Kang
et al.[6] to determine the reasons why a FM is void. In
this work, Prolog was proposed to model and explain void
FMs if it were the case. Batory proposed in [1] using Logic
Truth Maintenance Systems (LTMS) to explain why a con-
figuration is not valid. Sun et al. [10] use Alloy Analyzer,
a model checking tool based on first-order logic, to detect
the sources of void FMs. Wang et al.[14] propose using de-
scription logic and RACER tool to deal with dead features
and void FMs. Trinidad et al. describe in [13, 11] the er-
rors explanation problem in terms of theory of diagnosis[9],
dealing with different kinds of error. They propose a frame-
work where different implementations were accepted and
gave details about using constraint satisfaction optimization
problems (CSOP) to deal with them. White et al.[15] pro-
posed using CSOP to deal with invalid configurations.

Notice that the techniques proposed to search for expla-
nations are different from those proposed to deal with de-
ductive reasoning. Moreover, most of the proposals that
deal with explanations focus on error analysis. We already
presented in [11] a framework to deal with errors relying
in diagnostic reasoning which is a particular application of
abductive reasoning as we will remark in next Section.

2.3 Catalog of Deductive Operations

There are two main works [4, 2] that have summarized
the state of the art in the automated analysis of FMs. Both
of them present an exhaustive survey of the operations that
have been proposed in the most relevant works.

• Determining if a product, feature model or configura-
tion is valid.

• Counting and obtaining all the products.

• Calculating a feature commonality and variability and
determining the core and variant features.

• Filtering and searching for optimal products.

• Dead and false-optional features and wrong-
cardinalities detection.

• Explanations and error correction.

• Model transformations such as simplification and
merging.

VaMoS'09

146

$���

� � �

������

Root=1
Root=1 � (A+B+C) in [1,2]
Root=0 � A=0 ^ B=0 ^ C=0
A=1 ⇔C=0

FM ∪ {A=1,C=1} is inconsistent

��

�� R2 makes FM ∪ {A=1,C=1} inconsistent

���������

!%

���������

Figure 2. Difference between deductive and abductive reasoning in FM analysis

A more detailed list of deductive operations may be seen
in Table 1. All the above operations are deductive ones but
explanations and error correction which are abductive op-
erations. Properly speaking, model transformations are not
analysis operations as they change the FM so they will be
out of our scope. Next Sections we analyse the structure of
abductive reasoning and refine the explanation operation to
provide into a wider set of abductive operations.

3. Abductive Reasoning in a Nutshell

Most of the applications that use logics commonly use
deductive reasoning or deduction. In deductive reasoning
we have a conception of our relevant world that is synthe-
sized within a Knowledge Base(KB). A KB is composed by
a set of facts that are accepted to be true. For example, a
FM will be the KB in automated analysis. The objective of
deduction is concluding a set of consequences from a KB.

In many contexts, the available information is incom-
plete or imprecise, normally due to the inability or diffi-
culty of explicitly capturing all the knowledge in a KB. In
classical logic, a proposition may be true or false. Any-
thing that is not known or may be inferred is considered
to be false in what is called the Closed World Assumption
(CWA)[8]. However, when incomplete knowledge appears,
we also consider a third state where a proposition is not
known to be true or false. Here is where default rules or
hypotheses appear. A hypothesis may be considered to be
true whenever we have no clue that it is false. However, it
makes that a conclusion that we infer from our KB based on
hypotheses must be invalidated when new knowledge con-
tradicting the hypothesis appears.

So we need a framework to represent an incomplete
knowledge, distinguishing between:

• Facts (F): the knowledge that we certainly know to be
true. It is a set {f1, · · · , fn} of formulas that must be
consistent.

• Default Rules or Hypotheses (H): A set {h1, · · · , hm}
of formulas which subsets can be assumed to be true if
they are consistent together with the set of facts.

With this structure, for a set of facts and a set of hy-
pothesis, we may have different possible scenarios S each
of them taking into account a different and valid subset of
hypothesis (S ⊆ H) consistent with the facts F .

A way to exploit this framework is called abductive rea-
soning or simply abduction. The objective of abduction is
searching for the scenarios that may explain an observed
situation or behaviour in the world. An observed behaviour
or observation (obs) may be for example a measurement in
a physical system or a conclusion obtained using deductive
reasoning, and is described as a set of formulas. Rigorously
speaking, an scenario S is an explanation to an observation
obs iff S cannot be entailed to be false from F and F ∪ S
entails the observation, i.e.

F ∪ S |= obs

F �|= ¬S

3.1 Minimalistic Reasoning

From the above definition, we may obtain more than
one explanation to an observation so abduction is a non-
deterministic problem. In most of the cases, we need a cri-
terion to choose the most suitable explanation and minimal-
istic reasoning may help on this issue.

Minimalistic reasoning relies on the principle that we
normally we are not interested in all the explanations but
in the best explanation. To determine the best explanation,
we may apply different criteria, but the most typical one
is taking the succinctest explanation in what is commonly
known as the Occam’s razor principle or parsimony law.

Here is where the concept of minimal explanation imple-
ments the parsimony law. An explanation E is minimal iff
for no subset E′ ⊂ E, E′ is an explanation. Therefore, in
a problem we will obtain two explanations for an observa-
tion {h1, h2} and {h3} if neither {h1} nor {h2} are able to

VaMoS'09

147

explain the observation. It means that {h1, h2, h3} may be
an explanation but it is removed for the sake of simplicity.
A similar but not equivalent criterion to be considered will
be choosing the explanations is taking the smallest explana-
tions in terms of the number of hypotheses that are consid-
ered. Following this criterion, {h1, h2} will be removed as
an observation since its size is bigger than {h3}.

3.2 Diagnosis

A diagnosis problem is one of the main applications of
abductive reasoning. Its objective is determining the com-
ponents that are failing in a system. Diagnosis is widely
applied to determine the components that are failing in a
circuit and diagnosing diseases in patients from their symp-
tom. To deal with diagnosis problems, one of the most com-
mon frameworks is Reiter’s Theory of diagnosis[9]. Reiter
describes a system in terms of the expected behaviour of
its components and how they are linked. Optionally, a de-
scription of how a component may fail may be introduced in
what is called a fault model. Errors are detected by means of
observations to the system behaviour and comparing them
to its expected behaviour. If expected and real behaviours
are different, an error is detected. In other terms, let us rep-
resent a system as a set of formulas F and let an observation
obs be another set of formulas. An error is detected iff:

F ∪ obs |= ⊥, or F �|= obs

Therefore, error may be detected using deductive reason-
ing, as we are searching for consequences of adding obs to
our knowledge. If we intend to go further and explain the
reasons why errors happen we face up an abduction prob-
lem. As we may observe below, diagnosis problems per-
fectly fit into the abductive reasoning structure, since:

• The set of facts is the description of the system be-
haviour, describing both normal and abnormal be-
haviour of components.

• The set of hypotheses is composed by formulas that
represent the normal and abnormal behaviour of each
component.

• Observations are provided to obtain explanations to the
errors that have been previously detected using deduc-
tion.

Therefore, using abductive reasoning we obtain a set of
minimal explanations, where an explanation for an error is
a list of components that are failing and a list of those that
must behave correctly.

Summarizing, a diagnosis problem is an abduction prob-
lem where the only available hypothesis are those indicating
the normal or abnormal behaviour of components.

3.3 Abduction, Deduction and Auto-
mated Analysis

Many operations have been proposed for the AAFM.
Most of them are deductive operations since their objec-
tive is obtaining conclusions from a logic representation of
a FM. However, there is a set of explanatory operations that
have been solved using abductive reasoning techniques. As
far as we are concerned, there has been no effort to remark
this difference. So it is our intention to shed light on the
difference between abductive and deductive reasoning so it
could be applied in automated analysis.

Figure 3 summarizes our conception of the automated
analysis when deductive and abductive operations are dis-
tinguished. In deductive operations, we are able to obtain
conclusions (or the absence of them) from a FM logical
representation that allows deductive reasoning. For abduc-
tive operations, we are interested in obtaining explanations
from the results or conclusions obtained from a deductive
operation. In this case, FMs are represented using logics
that distinguish between facts and hypotheses. Deductive
and abductive operations use different solvers or reasoners,
choosing the most suitable for each kind of operation to be
performed.

Next Section, we propose a catalog of abductive opera-
tions, and as we will expose later in Section 5, it will be a
task of our future work to explain in details the translation
of FMs to abductive logics and the solution using different
techniques or solvers.

4. Operations Catalog

We present a catalog of operations for the abductive rea-
soning on FMs. These operations are executed just after a
deductive operation. The catalog we present here is inspired
by Benavides’ [2] catalog of operations. We have selected
its deductive operations and some others that have been
proposed lately. For each deductive operation, we propose
”‘why?”’ and ”‘why not?”’ abductive questions. ”‘Why?”’
questions are asked when a deductive operation has a solu-
tion. ”‘Why not?”’ questions intend to find an answer for
a deductive operation that has no solution. Small examples
are provided to illustrate their usage.

4.1 Why? questions

A ”‘Why?”’ question intends to explain the result ob-
tained from a deductive operation. It is important to remark
that in this case, deductive reasoning is able to obtain a re-
sult, but we would also like to know the reason why that
result is inferred. We have found four relevant questions of
this kind:

VaMoS'09

148

�������	� $������� ����������

&��	��

�&' &�(���)

�������	�
��������

*'���

����

!�����

*'���

+�

)

(�������
,����

!����� %����

�������	� $�������

&��	��

����������
�&
' ,(%& &%+)

�������	�
��������

.#� ���/.#�/

(�������
,����

Figure 3. Relating abductive and deductive reasoning to automated analysis of FMs

$���

� �

�� ��

� � !

��������

�
(a) Operation 1 Example

$���

� � �

��

�	

�� ��

�

(b) Operation 2 Example

Figure 4. Example Feature Models

Operation 1. Why is it a variant feature? This operation
is executed to extend the information obtained from
the ”‘retrieving the variant features”’ deductive oper-
ation. In this scenario, we want to obtain the relation-
ship/s that are becoming a feature variant. Considering
the example in Figure 4(a), if we want to determine
the relationships that make feature D being variant we
have to obtain a justification that concludes that we are
able to remove that feature in a configuration. For the
example, we will obtain {R2} and {R3} as two expla-
nations to our question.

Operation 2. Why is it a core feature? The deductive
operation ”‘Retrieving the core features”’ lists the
features that appear in every product or core features.
This operation provides the relationships that makes

one of those features belong to the core. Considering
the example in Figure 4(b), all the features in the FM
are core features. We expect C to be a variant feature
since it is linked to the root by an optional relationship.
”‘Why is it a core feature?”’ operation will highlight
R4 and R1 relationships as a justification for C being
a core feature.

We have seen how this operation and the previous one
are applied to obtain more information from core and
variant features. We must notice that we may also use
both of them when we calculate the commonality or
variability of a feature. A feature which commonality
is 1 is a core feature; if its commonality is not 1 it is
a variant feature. Therefore, we may use operation 1
and 2 for these cases.

Operation 3. Why is a partial configuration valid? A
partial configuration in a FM is a list of selected
and removed features. A complete configuration
is a particular case of partial configuration where
each feature in the FM is selected or removed. The
deductive operation ”‘Determining if a configuration
is valid”’ infers whether it is possible to select and
remove the features in a partial configuration. If a
positive response is obtained, we may want to know
the relationships that make the partial configuration
possible. Let us take the FM in Figure 5 as an example,
where the list of selected features is {Root,A, C, E}

VaMoS'09

149

$���

� � �

��

�

�� ��

� � !

�������	

�

�

�

�

�

Figure 5. Operation 3 Example

and {D} the list of removed features. The result of the
abductive operation ”‘Why is a partial configuration
valid?”’ will return {R1, R3, R4, R5} as the set of
relationships that affect those features.

Operation 4. Why is a product optimal for a criteria?
Finding a product that optimizes a criteria is the objec-
tive of the deductive operation ”‘Optimizing”’. This
operation is commonly used when extra-functional
information is attached to a FM in the so-called
extended FMs[3]. In some situations we may be
interested in knowing the relationships that have
been taken into account to reach a solution. In
the example in Figure 4.1, {Root, C, E} features
form the product that is found to be the cheapest
product in the family. The abductive operation ”‘Why
is a product optimal for a criteria?”’ will obtain
{R2, R3, costRoot, costC , costE} as the relationships
that make this product optimal. This operation may
be seen as a particular case of Operation 3 where
the configuration is obtained from an optimization
process.

4.2 Why not? questions

Many deductive operations may obtain no solution or a
negative response when inconsistencies are found. In the
abductive operations that we analyse next, their objective
is obtaining further information about the relationships that
are making a deductive operation impossible to obtain a so-
lution. As we intend to find the components (relationships
in our case) that explain a failure or inconsistent situation,
these operations fit into the diagnosis problem, so their re-
sults may be used to repair a FM or a configuration.

Operation 5. Why is a feature model not valid? A void
FM is the one where it is not possible to derive any

$���

�
�

��

�	

��

� � !

��������

�

�

�

����01 ����02 ����03

����03

����0Σ����� 41

����0Σ����5 42

Figure 6. Operation 4 and 11 Example

$���

� � �

��

�	

�� ��

(a) Operation 5 Example

$���

� �

��

�

��

� !

�������	

� �

������ ��

��
��

(b) Operation 6-7 Example

Figure 7. Example Feature Models 2

product. A FM is valid if it defines at least one prod-
uct, i.e. it is not void. Void FMs are produced due to
contradicting relationships. The deductive operation
”‘Determining if a FM is void”’ tries to find a valid
product to demonstrate that a FM is valid. In case
it finds no product, the FM is determined to be void
and we need to extract information about the relation-
ships that make the FM be void or not valid. ”‘Why
is a feature model not valid?”’ operation obtains one
or more explanations for a void FM, i.e. sets of re-
lationships that prevent the selection of a product. In
the example in Figure 7(a), three explanations are ob-
tained: {R1},{R3} and {R4}. This information may
be used by a feature modeler to correct the FM by re-
laxing or removing one or more of those relationships.

Operation 6. Why is a product not valid? Whenever the
deductive operation ”‘Determining if a product is
valid”’ detects an invalid product selection, it is
mandatory to obtain further information about the re-
lationships that are making the product impossible to

VaMoS'09

150

$���

� �

�� ��

� !

���������	

(a) Operation 8 and 9 Example

$���

� � �

��������

��

(b) Operation 10 Example

Figure 8. Example Feature Models 3

derive. This operation will be useful when we want to
check for a FM to include a set of well-known prod-
ucts. In the example in Figure 7(b), we want the FM
to define the product {A, B,C, E} (remaining features
are supposed to be removed). Deductive operation de-
tects this product as invalid and ”‘Why is a product
not valid”’ explains this unexpected result by detect-
ing {R4, R6} as the relationships that are causing it.

Operation 7. Why is a partial configuration not valid?
Whenever ”‘Detecting if a configuration is valid”’
detects an invalid configuration, and we know that the
configuration must be possible, we may be interested
in knowing the relationships that are making it impos-
sible. Taking the FM in Figure 7(b) as example and
partial configuration {C, D}, we obtain relationships
{R5} and {R7} as explanations. From this point of
view, we may consider previous operation as a partic-
ular case of this one, as a product may be considered
as a partial configuration. Another approach to this
question would be obtaining the features that must
be removed from a configuration if we consider that
the FM is correct. In this case, this operation would
conclude that feature {C} or {D} must be removed
from the configuration to obtain a valid one.

Operation 8. Why is a feature not selectable (dead feature)?
A dead feature is the one that despite of appearing
in a FM it cannot be selected for any product. The
deductive operation ”‘Dead features detection”’
obtains a list of the dead features in a FM. This
operation detects the relationships that are making a
dead feature, assisting on the correction of the FM.
Taking the FM in Figure 8(a) as example, {F} is
obtained as the only dead feature in the model. The
explanations that we obtain are {R1}, {R3} and
{R4}, one of which must be removed or changed at
least to correct the dead feature.

Operation 9. Why is a feature a false-optional? A false-
optional (a.k.a. full-mandatory) feature is the one that

has an implicit mandatory relationship with its parent
feature despite of being linked by an optional relation-
ship. The declarative operation ”‘False-optional fea-
tures detection”’ obtains a list of this kind of features.
This abductive operation obtains explanations to repair
such an error. In Figure 8(a) example, {C, D} features
are false-optional, obtaining {R1} and {R4} as expla-
nations.

Operation 10. Why is a cardinality not selectable (wrong cardinality)?
Set-relationships use cardinalities to define the number
of child features that may be selected whenever its
parent feature is. When a cardinal is never used in
any product, we are taking about a wrong cardinality.
Although this operation is not theoretically described,
it is supported by FAMA Framework [12] which im-
plements a deductive operation ”‘wrong-cardinalities
detection”’. Taking Figure 8(b) example, we may
notice that it is impossible to select 3 child features
since A and C exclude themselves so R1 has a
wrong cardinality. This operation will provide two
explanations {R1} and {R2} since to correct the error
we may remove the cardinality or the ”‘excludes”’
relationship.

Operation 11. Why is there no product following a criteria?
When ”‘filtering”’ or ”‘optimizing”’ deductive oper-
ations are unable to find any product, this operation
helps on finding the reasons why there is no solution.
In the example in Figure 4.1, if we want to find a
product which costs less than 4, ”‘filtering”’ will
obtain no product at all. This operation will provide
explanations such as {costroot} and {costE} since
they increase the total cost of a product in 2.

4.3 Summary

We present the relations among abductive and deductive
operations in Table 1. The list of deductive operations is
mainly inspired in [2] and [4] and extended with error anal-
ysis operations[11] and configuration operations[15].

In this table, N/A is used to represent those operations
that do not fit into abductive reasoning. In this category we
place ”‘determining if two FMs are equivalent”’ as it is an
operation that compares two FMs and both deductive and
abductive reasoning frameworks are only able to deal with
just one FM. Corrective explanations are also out of our
scope although they are closely connected to explanations.
Corrective explanations may be considered as two-step op-
erations where an error is explained firstly and corrected
secondly. We are able to provide explanations via abductive
reasoning, but suggesting corrections is not so trivial and
will be an aim of our future work.

VaMoS'09

151

Deductive Operation Abductive Operations
Why? operation Why not? operation

Determining if a product is valid N/S Op.6
Determining if a FM is void N/S Op.5
Obtaining all the products N/S Op.7
Determining if two FMs are equivalent N/A N/A
Retrieving the core features Op.2 Op.1
Retrieving the variant features Op.1 Op.2
Calculating the number of products N/S Op.5
Calculating variability Op.1 or Op.2 Op.8
Calculating commonality Op.1 or Op.2 Op.8
Filtering a set of products N/S Op.6,7,11
Optimizing Op.4 Op.11
Dead features detection N/S Op.8
Proving Explanations1 Op.1-4 Op.5-11
Providing Corrective Explanations N/S N/A
False-optional features detection N/S Op.9
Wrong-cardinalities detection N/S Op.10
Determining if a configuration is valid Op.3 Op.7
1All the operations described in the table provide explanations for different contexts

Table 1. Relation between deductive and abductive operations

N/S is used to remark the operations that could be per-
formed but will have no sense from the point of view of the
automated analysis. For example, we are not interested in
determining why a FM describes 20 products. However we
must be interested in knowing why there a FM describes no
product.

5. Conclusions and Future Work

In this work, we have presented our conception of
AAFM from the point of view of the kind of reasoning
needed to solve the different analysis operations. We have
presented a new catalog of operations that rely on abductive
reasoning and some of which have already been dealt with
in some previous works, but the remaining operations are
new. As a first step in our roadmap of integrating abduc-
tion in AAFM it is our intention to open a debate where the
proposed catalogue of abductive operations is extended or
reduced.

Once we have obtained a stable catalogue, we envision
that we need two main pieces to complete the puzzle of ab-
ductive reasoning:

1. A translation from FMs to non monotonic logics, i.e.
logics that are able to represent incomplete knowledge.

2. A solver-independent solution to all the abductive op-
erations so that different solvers can be used to execute
these operations.

We will implement the solutions to these operations into
FAMA Framework [12]. Currently FAMA Framework sup-
ports explanations for operations 7 to 10 by means of CSOP
that you may download at www.isa.us.es/fama. Af-
ter obtaining these results, we will design benchmarks to
analysing the solvers that perform better for each abductive
operation.

References

[1] D. Batory. Feature models, grammars, and propositional for-
mulas. In Software Product Lines Conference, LNCS 3714,
pages 7–20, 2005.

[2] D. Benavides. On the Automated Analysis of
Software Product Lines Using Feature Mod-
els. A framework for developing automated tool
support. PhD thesis, University of Seville,
http://www.lsi.us.es/˜dbc/dbc archivos/pubs/benavides07-
phd.pdf, 2007.

[3] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005, 3520:491–503, 2005.

[4] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A
survey on the automated analyses of feture models. In Jor-
nadas de Ingeniera del Software y Bases de Datos (JISBD),
2006.

[5] K. Czarnecki and P. Kim. Cardinality-based feature model-
ing and constraints: A progress report. In Proceedings of the
International Workshop on Software Factories At OOPSLA
2005, 2005.

VaMoS'09

152

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature–Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University, Nov. 1990.

[7] M. Mannion. Using First-Order Logic for Product Line
Model Validation. In Proceedings of the Second Software
Product Line Conference (SPLC2), LNCS 2379, pages 176–
187, San Diego, CA, 2002. Springer.

[8] R. Reiter. On closed world data bases. pages 300–310, 1987.
[9] R. Reiter. A theory of diagnosis from first principles. Artifi-

cial Intelligence, 32(1):57–95, 1987.
[10] J. Sun, H. Zhang, Y. Li, and H. Wang. Formal semantics

and verification for feature modeling. In Proceedings of the
ICECSS05, 2005.

[11] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and
M. Toro. Automated error analysis for the agilization of fea-
ture modeling. Journal of Systems and Software, 81(6):883–
896, 2008.

[12] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A.Jimenez. Fama framework. In 12th Software Product
Lines Conference (SPLC), 2008.

[13] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
M. Toro. Explanations for agile feature models. In Proc-
ceedings of the 1st International Workshop on Agile Product
Line Engineering (APLE’06).

[14] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A seman-
tic web approach to feature modeling and verification. In
Workshop on Semantic Web Enabled Software Engineering
(SWESE’05), November 2005.

[15] J. White, D. Schmidt, D. B. P. Trinidad, and A. Ruiz-Cortes.
Automated diagnosis of product-line configuration errors in
feature models. In Proceedings of the Sofware Product Line
Conference, 2008.

VaMoS'09

153

VaMoS'09

154

An Industrial Case Study on Large-Scale Variability Management for

Product Configuration in the Mobile Handset Domain

Krzysztof Wnuk, Björn Regnell, Jonas Andersson and Samuel Nygren
Dept. of Computer Science, Lund University, Sweden

{krzysztof.wnuk, bjorn.regnell}@cs.lth.se

Abstract

Efficient variability management is a key issue in
large-scale product line engineering, where products
with different propositions are built on a common
platform. Variability management implies challenges
both on requirements engineering and configuration
management. This paper presents findings from an
improvement effort in an industrial case study
including the following contributions: problem
statements based on an interview study of current
practice, an improvement proposal that addresses the
challenges found, and an initial validation of the
proposal based on interviews with experts from the
case company.

1. Introduction

Software Product Lines have already proven to be a
successful approach in providing a strategic reuse of
assets within an organization [9]. In this context,
variability management is considered as one of the key
for successful product lines and concerns in all phases
of the software product line lifecycle [8]. We
experience considerable growth of the amount of
variability that has to be managed and supported in
software assets. Inspired by the previous fact, we have
conducted an industrial case study focusing on the
process of variability management at one of our
industrial partners in the mobile phone domain. The
topic of our investigation was an established product
line engineering process [9] in a company that sells
over 50 products every year worldwide in millions of
exemplars. Our goal for this study is to increase the
knowledge of how the products are configured by
studying current issues and if possible proposing and
evaluating improvements. To address the goal we have
formulated three research questions:

Q1: How are variability requirements and
variability points managed in software product lines
in practice?
Q2: What are the problems with managing
variability requirements and product derivation?
Q3: What improvements can be made in managing
variability?
The first two questions were addressed by an

interview study, were we have investigated the process
of product derivation [7] and the concept of managed
variability [9]. By using managed variability we refer
to defining and exploiting variability throughout the
different life cycle stages of a software product line
[9]. In total 29 persons working with requirements
engineering, implementation and testing were
interviewed in order to understand how the variability
is represented, implemented, specified and bound
during the product configuration. As a result, a set of
challenges is defined and presented in this paper.
 To address Q3, we have proposed and evaluated
improvements to the current way of working. Our
main proposal includes a new structure of variability
information that aims at enable linking product
configuration to the initial requirements. It includes
splitting the configuration into two levels of
granularity. Additionally, we propose to use a main
product specification with entities that can be
consistently applied throughout the whole organization
and will address current documentation issues.
 Finally, we have empirically evaluated our
improvement proposals by applying them to the
existing configuration structure in a pilot study.
Additionally, we have conducted a survey by sending
questionnaires about the potential benefits and
drawbacks of our proposal. 28 out of 34 persons have
answered our questionnaire. Most of the respondents
expressed positive opinions about the proposal and did
not express any major obstacles that may apply to it.
 The reminder of this paper is organized as follows.
In section 2, we describe the industrial context of the

VaMoS'09

155

case study. In section 3, we provide a description of
research methodology. In section 4, we discuss
identified problems and issues. In section 5, we
describe improvement proposals, which we evaluate in
section 6. Section 7 presents related work and the
paper is concluded in Section 8.

2. Industrial Context

The case study was performed at the company that
has more than 5 000 employees and develops
embedded systems for a global market. The company
is using a product line approach [9]. Each product line
covers different technologies and markets. The
variability of the software product lines in our case are
organized in two dimensions. The first dimension
represents product segments or product technologies,
and the second represents the code base that evolves
over time. In each of the clusters there is one lead
product built from the platform representing most of
the platform functionality. The lead product is scaled
down to create sub-products and new variants for other
markets and customers. Some of the sub-products
originating from the main product contain new features
[9]. The platform development process is separated
from the product development process as described by
Deelstra et. al in [7].

Organization. There are three groups of specialists
working with the requirements part of the platform
project: Requirements Engineers, Requirements
Coordinators and Product Requirements
Coordinators. Each technical area in the products
domain has a requirements engineers group
responsible for covering the progress in the focused
field. Their involvement in the projects is mainly
focused on the platform project where they supply high
level requirements derived from roadmaps, product
concepts and customer requirements. They are also
main responsible for the scoping process of the
platform. Requirements coordinators work between
requirements engineers and developers. Their main
role is to communicate requirements to the developers
and assist with creating detailed design documents and
requirements. Product requirements coordinators are
responsible for the communication of the requirements
between the product planner and requirements
engineers on the specific product level.
 The Development Teams are responsible for
implementing the software in the platform. They
review the requirements and estimate the effort needed
for implementation. Each new functionality is assigned
to a primary development team which is responsible

for its implementation in the software modules. Newly
implemented functionality is later tested before final
delivery to the platform. The different modules need to
be integrated and compiled to a full system. This stage
is done by the Product Configuration Managers
(PCMs) team which manages the different variants and
versions of the products created from the platform. The
compiled system is tested by a product focused testing
organization, Product Software Verification.

Requirements Management Process. The company
is using two types of containers to bundle requirements
for different purposes: Features and Configuration
Packages (CPs). As a feature we consider in this case
a bundle of requirements that we can estimate market
value and implementation effort and use those values
later in the project scoping and prioritization.
Configuration packages are used to differentiate the
products by selecting different packages for different
products. The company is using the similar approach
to CPs as described in [10], where a configuration
package is a set of requirements grouped to form a
logical unit of functionality. Every requirement has to
be associated with one or more CPs. The requirements
engineers list the changes and CPs in their area of
expertise in the Configuration Package Module. These
modules have dependencies between each other and
some of them are mutually exclusive [10]. CPs that are
common for all products in a product line are marked
with an attribute stating that these packages cannot be
removed from a product configuration. Hardware
dependencies, which make individual requirements
valid or invalid for different products, are also
specified by the use of Configuration Dependencies on
the requirements level. The model is similar to the
Orthogonal Variability Model proposed by Pohl et al
[9].

Product Planning. Product Planners are responsible
for defining products from the platform available in a
product line. They belong to the marketing division in
the company so their task is to create an attractive
product offer [3] rather than to perform the actual
configuration of it. The product planers establish a
concept of a new product which induces commercial
overview, price range, competitor analysis and gives
an overview of the high level requirements. This
document serves as a basis for the Product
Configuration Specification, which specifies the
product based on capabilities offered by the platform.
The product configuration specification specifies the
configuration of a product concerning both software
and hardware using the configuration packages defined
in the configuration package modules including

VaMoS'09

156

configuration dependencies. This model is also similar
to the Orthogonal Variability Model proposed by Pohl
et al [9]. The product configuration specification
corresponds to the application variability model of the
Orthogonal Variability Model.

Product Configuration Management. Product
Configuration Management teams are responsible for
integrating, building and managing variants in the
product line. When configuring a new product from
the product line, the product configuration manager
uses hardware constraints derived from a hardware
specification for each product in a cluster to set and
configure the software. At this stage, the traceability
from the configuration parameters to the requirements
is crucial. This part of the context is the subject for the
improvement proposal in section 5.

3. Research Methodology

In order to get a comprehensive picture of how
variability management is performed at our case
company, we decided to conduct a set of interviews
with various employees in various positions within the
company. The requirements management tool
architecture was also explored to understand how
variability is defined at the requirement level. During
this phase the persons involved in process
improvement for the requirements process were
interviewed and consulted with during the exploration
of the requirements management process.

The next step was to select key personnel to
interview in order to get as many different perspectives
how variability is managed and how products are
configured as possible. By analyzing the case
company’s product configuration interface, the amount
of variation for different development groups was
established. One group with a large amount of product

variations and one group with a small amount were
selected for further investigation. To cover the whole
process of variability, we have involved Product
Planners, Requirements Engineers, Requirements
Coordinators, Developers and System Testers in our
study.

The interviewed persons were selected based on
their position in the company. Some persons were
recommended by already interviewed. In some cases
the person that was asked to participate in our study
suggested a colleague as a replacement with the
motivation that he was more familiar with the area. In
total, 27 persons were interviewed. The interviews
were semi-structured in order to allow the interview to
change direction depending on the interviewee’s
answer, and adapted for the different roles and the
progress of the interview study. This approach
balances between early interviews that were more
focused on the general aspects with later more specific
interviews. The interviews took approximately one
hour. During this time interviewers took notes
continuously which were later summarized. During
summarization, discrepancies between interviewers
interpretation were discussed and, if needed,
formulated as questions that were later sent to the
interviewee. Apart from the summary, the interviewee
also received a model of how he or she perceived the
process of variability management. After interviewee
approval, which sometimes was done after some minor
changes, the data was ready to be analyzed. After
interviewing 27 persons, it was decided that the
received overview of the current process was
satisfactory to proceed with analysis and propose
improvements. Sample questions used at the interviews
and distribution of interviewed personnel can be
accessed at [15].

4. Results

 In this section we present the results from our
interview study. We describe the different perspectives
on the configuration process, configuration activity
measurements, and finally the problems that were
identified.

4.1 Perspectives on the Configuration Process

 Most of the stakeholders have a common view of
how products are created. The product projects create a
product concept, which is then used by requirements
engineers in defining platform requirements. Later in
the process the product planners are involved in
creation and configuration of new products by creating

Literature
study

Interview
study, current
situation

Development of
improvement
proposal

Evaluation of
improvement
proposal

Figure 1. Research methodology.

VaMoS'09

157

change requests issues regarding both new and existing
functionality. When previously created formal change
request is accepted, it is send to the assigned
developers team which performs implementation or
configuration changes. The differentiation achieved in
this manner is not explicitly documented in product
specification but only in the minutes from the change
board meetings. In the next section, the deviation from
this common view is described, as well as the
differences from the documented process model.
 Product requirements coordinators, requirements
coordinators and requirements engineers have limited
knowledge about how variability is achieved due to
their focus on the platform. They also state that
developers do receive most of the configuration
instructions through bug report issues from product
planners, customer responsible and testers. We
discovered that some variability is stated in the
requirements’ text in an implicit way creating
problems with recognition and interpretation at the
development phase. Product planners’ knowledge
about configuration packages is limited and they have
not experienced the need for a better product
documentation than what is delivered in the concept
definition.
 The developers express the opinion that information
regarding variability is not communicated in a formal
way. Instead, they get information about variability
through their team leaders in a form of change requests
at the late stages of development. These change
requests are often used to configure products. The
creation of new variation points is done in the platform
project, and is therefore often based on assumptions
made by the developers out of the previous
experiences and informal communication with people
involved in the process. The main opinion is that the
information about what value that should be assigned
to a variation point is possessed by individuals. The
information is also not documented sufficiently in
formal documents. Requests for new variation points
or values are forwarded to the product configuration
managers.
Product Configuration Management Perspective.

We discovered that the product derivation process is
iterative and similar to the one described by Deelsta et
al [7]. When a main product for a product line is
created from the platform, it is based on the existing
configuration of the previous similar product. This
configuration is adjusted to the new hardware
specification for the platform. Since the amount of
configuration parameters in the configuration file has
increased significantly, and they are not sufficiently
documented product configuration managers are
unable to keep track of all changes.

 When a new product has been set up, it is built and
sent to the product testers. Their task is to test the
product and to try to discover software errors and
functionality that might be missing. At this stage it is
often difficult for the testers to determine whether
errors depend on faulty configuration or software
errors. Therefore they create a bug report towards the
developers to initiate investigation of the reason of the
failure. The errors are corrected by developers and new
source code is later sent back to the product
configuration manager, which is merging the delivered
code from all development groups.
 When the sub-product is created, the most similar
product configuration is copied from the previous
products. Next, the configuration manager responsible
for the sub-products is trying to configure the product
by checking product structure documentation and other
relevant information. The required information is
gained from multiple sources, which leads to the
double maintenance problem described by Babich [11],
where uncertainties about the values of variation points
are concluded by comparing with other projects. As a
result a time consuming investigations have to be
perform and very often influences the speed and
correctness of the product configuration.

Figure 2. Accumulated changes to the
configuration over milestones.

4.2. Configuration Activity Measurements

 In order to understand how the configuration is
changed over time, change related measurements were
defined. The configuration file was chosen for each
label of the code base in the product line. Labels are
used to tag revisions of files produced by developers
that are to be used by product configuration manager.
The differences between each configuration file were

VaMoS'09

158

calculated in order to get measurements describing
how many parameters that were added, deleted or
changed. The results are visualized in figures 2 and 3.
Note that over 60% of the configuration changes are
done after the software has been shipped to the testers
(MS Alfa).
 The results support our previous observations
derived from interviews, where developers admit that
they configure the products based on bug reports and
change requests. At the time this study was performed,
the configuration had over one thousand different
parameters available at the product level, spread across
a configuration file of thousands of lines. These
parameters were controlling over 30 000 variation
points in the source code with different levels of
granularity. Further analysis showed, that one
configuration parameter controls an average of 28
variations points, which suggests that most of the

Figure 3. Changes to the configuration over
milestones.

variability is quite fragmented. The source code
consists of millions of lines of code in more than 10
000 files, giving an average 250 lines of code per
variation point.

4.3. Problems Identified

 According to Van Der Linden et al [3], the
configuration manager should be responsible for
maintaining the configuration of all variants and
ensuring that the functionality for all products is
covered. In our case it remains unclear who is
responsible for binding the variation points of the
platform to create a specific products. As a result, we
experience creation of variation point that have no
specific owner. Furthermore, since most of the
development and architectural activities are platform
focused and a role such as Application Architect or

Product Architect responsible for binding variation
points of the platform to create specific products is not
present in the current organization [9]. The lack of
clear responsibilities results in an absence of clear,
specific and strategic goals and long term
improvements.
 The configuration of new products is achieved in an
iterative manner between developers, configuration
management and testers [7]. Due to the lack of a
specific ownership, the configuration is not always
properly reviewed, which is often a reason for missing
functionality. As a result, testing and maintenance
efforts may increase. The knowledge about product
derivation and variability is not formalized [7,10].
 As mentioned previously, the unrestricted rules for
creating and managing variation points results in their
excessive creation. Many variation points become
obsolete either due to the fact that they were not
created for product configuration purposes or because
of the complex dependencies. It is undefined who is
responsible for removing these obsolete variation
points from the configuration file. This fact makes the
configuration file hard to manage and overview.
 In our case, the flexibility that needs to be copied
by standardization of the product line [9], in the sense
of amount of variation points is too great and offers
many more configuration capabilities than is needed
for product configuration and differentiation. The
number of variation points, and their structure is too
complex to be managed by the people responsible for
the product configuration and differentiation. The
variability capabilities need to be more standardized
and less detailed to handle the costs associated with the
flexibility.
 The biggest challenge throughout the organization
turned out to be the lack of complete product
specifications, which may lead to the following
problems:

� Time consuming “detective” work where
information is gathered through informal
communication and unofficial documents.

� Faulty bug reports.
� Double maintenance of fragmented product

information that exists in different documents
and versions throughout the organization.

� Faulty configuration.
� Critical knowledge about variability

configuring products possessed by
individuals.

� Increased effort in verifying the configuration
of a product.

 These problems is tackled by the use of unofficial
documents specifying the product characteristics for

VaMoS'09

159

both hardware and software. The documents are
created in an informal way and are neither reviewed
nor a part of the formal approval process, but still used
throughout the organization. These documents and the
related process can be improved with respect to
configuration management, as uncontrolled
documentation procedures may result in unintended
product configurations.

5. Improvement Proposal

 In order to improve the issues presented in section
4.3, we have developed a set of improvements
regarding variability documentation, granularity and
management.
Improved traceability between requirements and

variants. Our proposal will reuse the configuration
package concept, described in section 2, to associate
the configuration parameters with the requirements.
The configuration packages should be used by the
product planners to configure the products. By
associating the configuration packages with the
configuration parameters, traceability links to both
requirements and configuration parameters will be
established. The division into configuration packages
should be done in cooperation between developers and
requirements engineers to fully capture all possible
aspects of variability. Newly created variation points
should be explicitly documented and spread across all
stakeholders. This approach will result in a more
complete traceability between the configuration
packages and the configuration interface, and can be a
step towards the automatic generation of a product
configuration directly from the product configuration
specification in the future.
Abstraction layer. The overview of the proposed
abstraction level is described in figure 4. In the current
structure the configuration file contains all detailed
feature configuration on a very low level for all
products defined. The file is edited by both product
configuration managers and developers and because of
its size and granularity it is vulnerable and subject to
merge conflicts. Our proposal introduces a new
abstraction layer, CP-Conf, between the product
configuration interface and the software modules. The
low level configuration is moved into the lower layer,
and a high level product configuration based on the
configuration packages is used on the product
configuration level. In this solution, the developers
are becoming responsible for the CP-Conf layer and
the modules associated with it. The product
configuration manager is only responsible for the high

level product configuration. To be able to
introduce an abstraction level, configuration

parameters in the configuration file need to be moved
to a separated files where a parameters belonging to a
certain development team reside. The specification of
selected modules needs to be in these separated files
too, since it depends on the selected configuration
packages. Also, when this abstraction layer is
introduced and the parameters are named according to
the configuration packages, there should be no need to
change the existing variation point naming since the
parameters will be moved out from the main
configuration file. The solution is described in figure
5.

New configuration parameters. Today the naming of
the configuration parameters includes a feature
description indicating what functionality the parameter
affects. However, the features in the configuration
parameters are not mapped to the requirements by
including an identifier connected to a specific

Proposed6structure6

Current6structure6

If6(ProductA)6
66CPM_6GenericPlayer=On6

If6(CPM_6GenericPlayer)6
PLAYER_TYPE=GenericPlayer66666
AUDIOVISUALIZER6=6On6

66METADATA_TAG_ALBUMART=6On6

If6(ProductA)6
PLAYER_TYPE=GenericPlayer666666
AUDIOVISUALIZER6=6On6

666METADATA_TAG_ALBUMART=On6

Product6configuration6

CP9Conf CP9Conf CP9Conf

M M M M M M M M M

M M M M M M M M M

Product6configuration6

Figure 4. Overview of the proposed
abstraction layer.

<includes>6

Configuration6file6

Camera.cfg6

Multimedia.cfg6

If (ProductA)
 CPM_MESSAGING_EMAIL_CONSUMER= On
 CPM_MESSAGING_IMS_MESSAGING = On

Messaging.cfg6

If (CPM_MESSAGING_EMAIL_CONSUMER)
 CFG_MSG_EMAIL = On
 CFG_MSG_EMAIL_OMA_NOTIFICATION = On
 CFG_EMAIL_OMA_CLIENT_PROV = On

If (CPM_MESSAGING_IMS_MESSAGING)
CFG_IMS_SERVICE = On

 CFG_IMS_APP_SETTINGS = On
 ... Owned6by6

Developers6

Owned6by6
Product9CM6

Figure 5. Configuration is distributed into
configuration files according to the concept of
Configuration Packages.

VaMoS'09

160

requirement. Since the feature names originate from
two sources, traceability is based only on human
reasoning. We propose a new standard for
configuration parameters where four types of
parameters are available:

� The existing low level parameters which are
presently used for product configuration.
To remove or change these parameters is an
infeasible work.

� The existing parameters which define the
hardware properties of the product should be
assigned a prefix CFG_HW. Today many of
the parameters created are hardware
dependent and could therefore be removed by
using the hardware properties instead of
creating new parameters. The syntax of the
parameters should include the serial number
from the hardware requirements specifying its
value.

� A new type of parameter for configuration
dependencies. The name should include the
dependency type (HW/FormFactor/
Customer/Market). The syntax can e.g. be
CD_<TYPE>_<NAME>.

� An internal binding should be used when
software varies non-significantly.

Documenting variability. Currently, the
documentation of variation points is not mandatory
and resulting in its incompleteness. Since developers in
our proposal will be responsible for the lower levels of
variability, the documentation process will be
simplified by responsible stakeholders’ constraining.
By introducing traceability between the product level
configuration interface and the configuration packages,
no further documentation is needed on the higher level.
The name standard will be descriptive and in line with
the configuration packages. It will enable stakeholders
to find more information in the requirements
management system, where the configuration packages
are defined, described and associated with
requirements.
Managing obsolete configurations. Many parameters
in the configuration file are obsolete. Because of that
we propose that the configuration file should be locked
for changes. Parameters that do change but have the
same value for all products should be moved to the
development team’s specific file, and should not be a
part of any configuration package. Similar to the
configuration parameters, obsolete configuration
packages that are not used in any product should be
moved out from the software product line. If a
configuration package is used in any product it should

be incorporated into the platform and removed from
the set of CPs. In the same fashion as the configuration
packages, the high level hardware parameters should
be left at the product configuration level, while its
associated low level parameters should be moved to
the proposed low abstraction layer and owned by the
developers.
Availability of product specifications. All available
configuration packages in the platform should be
included in the product configuration specification,
and a connection to the previously mentioned
abstraction layer should be made. By applying this
approach, the task of configuring a new product will
be simplified and could possibly be automated in the
future. The automatic configuration file generation can
be based on the configuration packages defined in the
requirements management tool.

6. Evaluation of the Proposals

The evaluation of the implemented proposals was
carried out as a desktop pilot [12], where the new
structure was applied to the existing structure. The
desktop pilot was run on a subset of the configurations
belonging to two development teams. Two developers
from each team, chosen based on their knowledge
about configuration parameters, have participated in
the redefinition part of the evaluation. The
configuration packages defined by requirements
engineers were used to group the existing low level
configuration parameters, as described in the proposal.
This was done in cooperation with the developers.
When parameters could not be linked to a certain
existing configuration package, the developers had to
consider defining a new configuration package,
configuration dependencies or hardware requirements.
From these lessons learned we can conclude that:

� Packages need to be complemented with a
more complex version for greater
differentiation possibilities

� Some packages need to have defined
dependencies to other packages

� The differences between some of the similar
configuration packages need to be described
by requirements engineers

� One package may in the future need to be
split into several packages that contain end-
user functionality and one common package
that does not offer any end-user benefits. This
one package is dependent on others
previously described.

� Problems may arise when new configuration
packages need to be created instantly. In this

VaMoS'09

161

case the bottleneck will be the communication
with requirements engineers.

� There are packages that can be removed from
the product due to strong dependencies. In
this case, product planners should not be
allowed to deselect these packages.

After the redefinition of the configuration, the
developers were asked to fill in the evaluation form
[13], answering questions concerning the improvement
proposal and its possible benefits and drawbacks. To
get as many answers as possible, the information was
held short and concise. The evaluation form was also
sent out to all members in the first development group
and to half of the members in the second group,
totaling with 34 persons. 28 out of 34 persons have
answered and the detailed results are accessible in
[14].

From the evaluation it can be seen that the
participants have been involved in the product
configuration. They also see problems with how it is
handled today. The proposal was considered as easy to
understand and implement.
 Some responders mentioned that customer
specifications were not addressed enough. One
participant also addressed a need for training in
variability management. Most of the participants
thought that the responsibilities and the separation of
product and feature configuration is easy to
understand. In the qualitative part of the results, it was
confirmed that the workload will be reduced by
improved division of responsibilities.
 Most responders strongly agreed to that our
proposal should increase the quality of products. On
the other hand, a few responders claimed that the
quality of the products is now high enough and that
our proposal will not make any significant difference.
The question addressing improvement in the
configuration efficiency scored above average, which
indicates that this proposal would have a significant
effect on efficiency in the way of working rather than
end-product quality. This was emphasized by some
people who stated that the configuration would
become more manageable and less time consuming.
 On the question regarding drawbacks there were
concerns that the configuration packages may get too
large and fail to offer the needed from market
perspective detailed level of configuration. It was also
mentioned that there will be a stabilization period until
the CPs are clearly defined. One responder expects that
quick fixes will be hard to handle using CPs, and that
there therefore could lead to the “quick and dirty”
solutions which are hard to maintain. There is a risk
that the number of CPs will increase and that the same

problems will arise again. Some responders were also
worried about customer specific configurations, which
the proposal does not specify in detail. Most
participants stated that their work will not be affected
negatively. Moreover, they stated that there will be less
work for the developers with the proposal. The
developers would have fewer responsibilities and for
some participants their responsibility for product
configuration will be completely removed. Overall, the
proposal was considered as a better solution than the
current way of working.
 In the evaluation with the configuration
management strategists the responses were positive.
Among the positive comments were the possibilities to
define a clear process with unambiguous
responsibilities, to automate product derivation and
verification and to improve the product derivation
process. The concerns regarded the need for a
streamlined process for managing the configuration
packages, including exception handling. Possible
dependency problems when a configuration package
spans many development teams were also discussed.
The overall impression was very positive.
Threats to validity. The way how people were chosen
to participate in the interviews can lead to insufficient
results. By getting recommendations to which people
to interview the risk of getting a subjective picture
increases.
 The results can be biased by continuous
communication with the contact person in the company
or by the fact that some concerned stakeholders might
have been overlooked in different parts of the case
study.

When performing these kind of evaluations, it is
difficult to cover all aspects. We are aware that this
evaluation only takes a few of the affected
development teams into account, and therefore some
important information may not be reached.
Furthermore, the amount of variation points that each
development team is responsible for or shares with
other groups varies. Therefore, the scale of affection of
the proposal on each development team may vary.
 We have not yet performed any evaluation among
other stakeholders, like product planning and
requirements engineers. Although they are not
involved in the technical parts of the proposal, they are
part of the process associated with the proposal and it
is therefore a drawback not to have these stakeholders
represented in the evaluation.
 We also see some challenges concerning the ability
to maintain the new way of working. It is important
that the configuration packages only reflect the current
needs for variability and that the configuration
packages are not created proactively in the same

VaMoS'09

162

manner as variation points are created today. It is also
important to educate people in order to consistently
convince them of the gains achieved about the new
praxis.

7. Related empirical work

Industrial case studies in existing literature
[1,2,3,4,5,7] describe the process of introducing
product lines. These studies report similar problems to
those reported in this paper appear. For example, in the
Thales case [7] documentation of the platform has
deviated from the actual functionality as the platform
has evolved. In other cases [1,4] the enormous amount
of low level variability in software was reported.
Clements et. al [5] reported that the variability was
present only on the files and folders level. In the
Philips case [3], the problem of too many dependencies
between components, resulting in much time spent on
integration problems, was reported. Patzke et. al [6]
discovered that many of the differentiation point were
actually obsolete and not used any more. The company
was also struggling with outdated documentation that
was not updated regularly.
 In most cases a product line approach was
introduced in an evolutionary way, apart from one
example [4], where all ongoing projects were paused
and the resources were moved to the introduction of
the product line project. In some cases, the product
line was developed around a new architecture, while
assets were derived from an existing base e.g. [3].
Sometimes, a new product line was based on the most
similar product from the most recent project. Some
cases, like [1], claim that their main success was
achieved in the architecture and reorganization, and
resulted in the change of the hardware to software cost
ratio from 35:65 to 80:20.
 The issue of improved traceability between
requirements models and variant has been addressed in
the literature. For example, Clotet et al. [16] present an
approach that integrates goal-oriented models and
variability models while Alfarez et al. [17] present a
traceability meta-model between features and use
cases. Both example cases seem to be domain
independent but are evaluated on relatively small
examples which leaves the question of applicability in
a large-scale industrial context open.

8. Conclusions

 As mentioned in introduction, software product
lines improves the quality of the products and reduces
the time spent on a product development. However,

managing a product line and its variation points
efficiently requires a consistent way of working and
clear responsibilities. In this case study it has been
found that new products are derived by copying the
most similar configuration from previous products and
iteratively configuring the product between developers,
CM and testers. The variability is neither clearly
specified nor documented. The responsibilities are
unclear. There is no connection between the
requirements and the configuration possibilities in the
product line. These aspects affect negatively the
possibilities to verify the configuration and the time
spent on product configuration.
 To be able to cope with these issues, improvement
consisting of an abstraction layer in the configuration
interface have been proposed. This abstraction
separates the low level feature configuration from the
high level product configuration, and establishes a
traceability from requirements to configuration. To
clarify the product configuration and ensure that
everyone is working consistently, we propose that a
product specification, based on these configuration
packages, is used throughout the company. Below, we
summarize identified problems and corresponding
possible improvements:

� Large number of variation points with an
unmanageable granularity. Variation points
are encapsulated into configuration packages,
separating the high level configuration from
the low level configuration, and resolving the
granularity issues.

� Unclear responsibilities and unstable process
for the product configuration. By dividing the
configuration into different layers and
proposing responsibilities are clarified.

� No clear traceability between configuration
parameters and initial requirements. By
introducing an abstraction layer based on
configuration packages, the configurations are
directly linked to the initial requirements.

� No complete product specification available.
A new and managed product specification
based on configuration packages are spread
throughout the organization and used by all
stakeholders.

� Products are configured in an inefficient and
iterative process without using the initial
requirements. By the use of a complete
product specification and a configuration
interface based on the same configuration
packages, the configuration can be done at
early stage.

VaMoS'09

163

 The evaluation of our proposal shows that the
developers are coherently positive to the suggested
improvements. To validate out proposals, the changes
were simulated together with two development teams.
The results showed no major obstacles, but
emphasized the importance of cooperation between the
requirements engineers and the developers in the
definition of the configuration packages. The
expectations of this proposal are as follows:

� to reduce effort and time spent on iterative
configuration,

� to ensure a higher product quality by
improved product verification,

� to state more clear responsibilities among
stakeholders,

� to make the information concerning
variability within the company more
accessible.

 It is stated in [9] that explicit documentation of
variability can help to improve making decisions,
communication and traceability. Following [9] we can
also conclude that introducing abstraction levels for
variation points and variants improves understanding
and management of software product line variability.
As a result, we conclude, that our improvement
proposals may be relevant for other contexts by
addressing the general issue of variability in software
product lines with abstraction mechanisms on both
requirements and realization level [8].
 This paper contributes in a detailed investigation on
product derivation from a large software product line,
which addresses research question Q1. Question 2 is
addressed in section 4.3 as a set of challenges in
practice. Finally, Q3 is addressed by the improvement
proposals, decribed in section 5 that may increasing
product quality and decreasing the effort needed for
product defiviation.

Acknowledgements. This work is supported by VINNOVA
(Swedish Agency for Innovation Systems) within the UPITER
project. Special acknowledgements to Per Åsfält for valuable
contributions on problem statements and research direction.

9. References

[1] L. Brownsword and P. Clements, “A Case Study in
Successful Product Line Development”, Technical Report
no. CMU/SEI-96-TR-016, Carnegie–Mellon Software
Engineering Institute, Pittsburgh USA, 1996.
[2] A. Jaaksi, “Developing mobile browsers in a product
line”, IEEE Software, IEEE Computer Society, 2002, pp. 73-
80.
[3] Linden, Frank J., K.van der Schmid and E. Rommes,

Software Product Lines in Action The Best Industrial
Practice in Product Line Engineering, Springer-Verlag,
Berlin Heidelberg, 2007.
[4] Clements P. and L. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley Professional, 2002.
[5] Clements P. and L. Northrop, Salion, Inc.: A Software
Product Line Case Study, Technical Report CMU/SEI-2002-
TR-038, Carnegie Mellon Software Engineering Institute,
Pittsburg , 2002.
[6] T. Patzke, R. Kolb, D. Muthig and K. Yamauchi,
“Refactoring a legacy component for reuse in a software
product line: a case study”, Journal of Software Maintenance
and Evolution: Research and Practice, John Wiley & Sons,
UK, 2006, pp.109-132.
[7] S. Deelstra, M. Sinnena and J. Bosch, ”Product
Deriviation in software product families: a case study”, The
Journal of Systems and Software, Elsevier, New York USA,
2000, pp.173-194.
[8] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H.
Obbink, K. Pohl, “Variability Issues in Software Product
Lines”, Software Product-Family Engineering. 4th
International Workshop, Springer-Verlag, Bilbao, Spain, 3-5
Oct. 2001, pp. 13-21.
[9] Pohl, C., G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques, Springer-Verlag, New York USA, 2005.
[10] Bosch J., Design and Use of Software Architectures
Adopting and evolving a product-line approach, ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.
[11] Babich, W.A, Software configuration management:
coordination for team productivity. Addison-Wesley
Longman Publishing Co.,Inc., Boston, MA USA, 1986.
[12] R. L. Glass, “Pilot Studies: What, Why and How”,
Journal of Systems and Software, Elsevier Science Inc, New
York USA, 1997, pp. 85-97.
[13] Evaluation form can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/E
valuationForms.pdf
[14] Results of evaluation can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/R
esultsOfTheEvaluation.pdf
[15] The interview’s instrument and participants distribution
can be accessed at
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/I
nterviewInstumentAndDistribution.pdf
[16] R. Clotet, D. Dhungana, X. Franch, P. Grunbacher, L.
Lopez, J. Marco and N. Seyff, “Dealing with Changes in
Service-Oriented Computing Through Integrated Goal and
Variability Modelling”, Second International Workshop on
Variability Modelling of Software-intensive Systems,
Universität Duisburg-Essen, Germany, 2008, pp.43-52.
[17] M. Alfarez, U. Kulesza, A. Moreira, J. Araujo, V.
Amaral, “Tracing between Features and Use Cases: A
Model-Driven Approach”, Second International Workshop
on Variability Modelling of Software-intensive Systems,
Universität Duisburg-Essen, Germany, 2008, pp.81-88.

VaMoS'09

164

A Design of a Configurable Feature Model Configurator∗

Goetz Botterweck
Lero

University of Limerick
goetz.botterweck@lero.ie

Mikoláš Janota
Lero

University College Dublin
mikolas.janota@ucd.ie

Denny Schneeweiss
BTU Cottbus

Cottbus, Germany
denny.schneeweiss@tu-cottbus.de

Abstract

Our feature configuration tool S2T 2 Configurator inte-
grates (1) a visual interactive representation of the feature
model and (2) a formal reasoning engine that calculates
consequences of the user’s actions and provides formal ex-
planations. The tool’s software architecture is designed as
a chain of components, which provide mappings between
visual elements and their corresponding formal representa-
tions. Using these mappings, consequences and explana-
tions calculated by the reasoning engine are communicated
in the interactive representation.

1. Introduction

In the research on feature models different aspects have
been addressed. First, there is work on formal semantics of
feature models [6], which enables us to precisely express
the available configurations of a product line in the form of
a feature model. Second, there is the interactive configura-
tion of feature models, as addressed by visualization of fea-
ture models [2] or feature modeling tools [1]. In this paper
we strive to link these two worlds. So how can we provide
a usable feature model representation, which can be config-
ured interactively and precisely implements the underlying
formal semantics?

We address this problem with S2T 2 Configurator, a re-
search prototype which integrates an interactive visual rep-
resentation of feature models and a formal reasoning en-
gine.1 The architecture of the Configurator is designed as a
chain of components, which provide mappings between vi-
sual elements and their corresponding representations in the
formal reasoning engine, see Figure 1. The Software Engi-
neer interacts with multiple Views of the Model. The Conse-
quencer infers consequences and provides explanations. A

∗This work was supported, in part, by Science Foundation Ireland grant
03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre.

1S2T 2 stands for “ SPL of SPL Techniques and Tools ”.

Translator serves as a mediator between the representations
used in these components.

2. Requirements

Before we present the Configurator tool, we have to
briefly discuss the required functionality. First, the applica-
tion has to load the model and translate it into a formal rep-
resentation. Subsequently, the user configures the model by
making and retracting decisions. For Boolean feature mod-
els, a user decision is either a selection or an elimination
of a certain feature. Hence, we have four potential config-
uration states (the power set of {true, false}): Undecided,
Selected, Eliminated, and Unsatisfiable.

After any change (loading, user interaction) the tool has
to infer consequences, taking into account constraints im-
posed by the model and user decisions. These consequences
have to be communicated in the visual representation. We
distinguish four sources of configuration: M = Model (given
in the model), MC = ModelConsequence (consequence of
M), U = User (given by interaction), and UC = UserCon-
sequence (consequences of U, might rely on M).

The tool must enforce constraints and disable decisions
that lead to configuration states where no valid configu-
ration is possible without retracting decisions (“backtrack
freeness”). The tool shall explain why certain configuration
decisions were made automatically. The explanation shall
be given within the model by highlighting elements that led
to the explained decision.

3. Feature Model

The goal of interactive configuration of feature models
led us to a particular design of our modeling language. To
be able to map consequences and explanations generated
by the Consequencer to visual representations we “chopped
up” our feature models in smaller pieces which we call
feature model primitives. For instance, to describe fea-
ture groups, we use primitives like AlternativeGroup,

VaMoS'09

165

Configuration
Actions

Software
Engineer

Translator ConsequencerModel

Consequences

Consequences

Configuration
Actions

View 1

View 2

Propositional
Logic

Consequencer
Languages

Feature Model
Primitives

La
ng

ua
ge

s
So

ft
w

ar
e

Co
m

po
ne

nt
suses uses uses

Figure 1. Overview of the components and languages used in S2T 2 Configurator

GroupHasParent, or GroupHasChild. Similar prim-
itives exists for other elements typically found in feature
models (e.g., root, mandatory and optional subfeatures) and
to capture user decisions (selection, elimination). Overall
the FeatureModel consists of a set of Features and a
set of FeaturePrimitives.

Features can be interpreted as variables and primitives
as constraints over these variables. A legal configuration
has to fulfill all of these constraints. Hence, if we inter-
pret each primitive by translating it into a formal represen-
tation and conjoin all of these translations, this gives us the
formal semantics of the overall model. We use a similar
structure (variables + constraints) for other more formal lan-
guages. Consequently, (1) we can use a generic design for
all the configurators operating upon these languages and (2)
reasoning and explanations are implemented by a chain of
mappings between constraints in various languages.

When the user starts configuring a model, his de-
cisions can be described by adding primitives, e.g.,
SelectedFeature or EliminatedFeature. Since
the tool only offers configuration decisions that keep the
model in a consistent state, making decisions and adding
the corresponding primitives will create a more constrained
feature model, which represents a subset of feature config-
urations of the original model. During this process, the
backtrack-freeness of the configurator guarantees that at
least one legal configuration remains.

4. User Interface

The meta-model gives us the means for describing a fea-
ture model as a set of primitives. Let us see how this is
presented to the user. Figure 2(a) shows an example fea-
ture model (based on [3]) in S2T 2 Configurator right after
loading.

The features Car, KeylessEntry, Body, Gear are
mandatory and selected. The Engine configuration source
for all of these primitives is M = Model. Because Engine
Requires Injection, the configurator infers that the

latter has to be selected as well and creates the corre-
sponding SelectedFeature-primitive with configura-
tion source ModelConsequence(MC). The configuration
states of features are represented as icons (check mark = se-
lected, X = eliminated, empty box = undecided). Icons for
features with the source M or MC are shown in gray to
indicate that the user cannot change the state.

If the user now selects KeylessEntry the Conse-
quencer deduces that PowerLocks has to be selected as
well. Therefore, a SelectedFeature(PowerLocks)
primitive is created and the view is updated accordingly (see
Figure 2(b)).

The user might want to get an explanation why
a certain feature was automatically selected or elimi-
nated. This can be done via a pop up menu (see Fig-
ure 2(c)). When the user clicks Explain, the view
queries the configurator for an explanation for the cur-
rently focussed feature. Thanks to our software design,
the explanation can be mapped back to a list of primi-
tives, which get highlighted in the view. For instance,
when asking “Why is PowerLocks selected?” the tool
will highlight SelectedFeature(KeylessEntry)
and the corresponding Requires({KeylessEntry},
{PowerLocks}).

5. Integration between UI and Consequencer

One of our design goals was to allow multiple views,
which can be used side-by-side, e.g., to focus on different
aspects of the same model. Hence, when a configuration
decision is made within one view, all resulting updates have
to be propagated to the other views.

Hidden from the views the model communicates with
the Consequencer. When a view commits a change to the
model by adding or removing a primitive, this modification
is first passed to the Consequencer, which produces conse-
quences. These are then applied to the model. The modifi-
cation (as triggered by the view) and the application of the
consequences are performed atomically, in the sense that

VaMoS'09

166

(a) Visual representation of the feature model (call-outs indicate corresponding primitives from the meta-model).

(b) Configuration by interaction and consequences). (c) Explanation of consequences.

Figure 2. Visual representation of the model in the view of S2T 2 Configurator

no other operations are allowed before the consequences
are applied. This is enforced by the interface, which all
views must use to perform operations on the set of prim-
itives. Thus the model is back in a valid state at the end
of such an modification-consequence-combination. Subse-
quently all views are notified about the changes (including
the inferred consequences).

6. Translator

The purpose of the translator is to get from feature model
primitives to a format understood by the Consequencer,
which is reasoning on some form of mathematical logic.

However, the Translator is not one-way. When providing
consequences and explanations, it has to realize communi-

cation from the Consequencer to feature model primitives.
From a Software Engineering perspective, it is impor-

tant that the tool can be easily used with different reasoning
engines that realize the Consequencer component. Such en-
gine typically has its own language as it can be used inde-
pendently of the configurator.

To facilitate this, the Translator decomposes the transla-
tion process into several steps, each represented by a dif-
ferent component, a mini-configurator. Each of the mini-
configurators communicates via certain language.

The following diagram depicts the mini-configurator
chain as realized in the current implementation.

FPC �� PLC
��

�� REC
��

Feature Primitive Configurator (FPC) translates between
feature primitives and propositional logic. Propositional

VaMoS'09

167

Logic Configurator (PLC) provides communication be-
tween propositional logic and Reasoning Engine Configu-
rator (REC), which performs the actual reasoning.

The output of FPC is a machine-readable language of
propositional logic with logic conjunctives and negation and
thus amenable to further conversion to reasoning engines.

Each feature f corresponds to a Boolean variable Vf .
And the translation of the primitives is done according to
the traditional semantics of feature models [6]. The follow-
ing table lists several examples.

primitive logic formula
OptionalChild(c, p) Vc → Vp

MandatoryChild(c, p) Vc ↔ Vp

SelectedFeature(f) Vf

Excludes({a, b}) ¬(Va ∧ Vb)

Hence the input of the mini-configurator REC is propo-
sitional logic while its output is propositional logic in the
Conjunctive Normal Form (CNF). This form is required by
the reasoning engine used in the implementation (see Sec-
tion 7). A different engine might require a different format
and this mini-configurator would have to be replaced.

To obtain a uniform view on these languages, we as-
sume that in each of them a sentence comprises a set of
constraints and a set of variables. Depending on the partic-
ular language, we use different variables and constraints as
shown in the following table.

language variables constraints
feature model features feature primitives
prop. logic Boolean variables prop. formulas

With respect using Boolean variables for formal repre-
sentation, note that while in the current implementation the
mappings between variables in the different languages are
1-to-1, in general, more complicated mappings may arise.
For instance, if we model a variable with a larger domain
by using multiple Boolean variables.

This uniform view on the used languages enables us
to provide a generic interface which any of the mini-
configurators (e.g., FPC) implements. This interface can be

interface IConfigurator<Variable, Constraint> {
void addConstraint(/*@non_null*/Constraint c);
void removeConstraint(/*@non_null*/Constraint c);
Set<Constraint> computeConstraints(Variable v);
Set<Constraint> explain(/*@non_null*/Constraint c);

}

Figure 3. Configurator interface

found in Figure 3. Constraints can be added and removed
later using the methods addConstraint and removeConstraint.

The method computeConstraints infers consequences that ap-
ply to the given variable while the method explain explains
why a given consequence was inferred.

This architecture is rather flexible as any of the compo-
nents can be easily replaced by another one as long as it im-
plements the same interface and relies only on the instance
of the IConfigurator interface of the succeeding component.

7. Consequencer

The reasoning engine used in our implementation relies
on a SAT solver [5], which is why it requires the Conjunc-
tive Normal Form. The engine has been developed in our
previous work and more details can be found elsewhere [4].
To connect this reasoning engine to the component chain of
S2T 2 Configurator, it was merely necessary to provide the
IConfigurator interface for it (see Figure 3).

A different reasoning engine (e.g., [7]), would be added
analogously.

References

[1] D. Beuche. Variants and variability management with
pure::variants. In 3rd Software Product Line Conference
(SPLC 2004), Workshop on Software Variability Management
for Product Derivation, Boston, MA, August 2004.

[2] G. Botterweck, S. Thiel, D. Nestor, S. bin Abid, and C. Caw-
ley. Visual tool support for configuring and understand-
ing software product lines. In 12th International Software
Product Line Conference (SPLC 2008), Limerick, Ireland,
September 2008. ISBN 978-7695-3303-2.

[3] K. Czarnecki and A. Wasowski. Feature diagrams and log-
ics: There and back again. In SPLC ’07: Proceedings of the
11th International Software Product Line Conference (SPLC
2007), pages 23–34, Washington, DC, USA, 2007. IEEE
Computer Society.

[4] M. Janota. Do SAT solvers make good configurators? In First
Workshop on Analyses of Software Product Lines (ASPL ’08),
2008. Available at http://www.isa.us.es/aspl08.

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. CHAFF: Engineering an efficient SAT solver. In
39th Design Automation Conference (DAC ’01), 2001.

[6] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature di-
agrams: A survey and a formal semantics. In Requirements
Engineering Conference, 2006. RE 2006. 14th IEEE Interna-
tional, pages 136–145, 2006.

[7] S. Subbarayan. Integrating CSP decomposition techniques
and BDDs for compiling configuration problems. In Proceed-
ings of the CP-AI-OR. Springer-Verlag, 2005.

VaMoS'09

168

Using First Order Logic to Validate Feature Model

Abdelrahman O. Elfaki, Somnuk Phon-Amnuaisuk, Chin Kuan Ho
Center of Artificial Intelligent and Intelligent computing,

Multimedia University, Cyberjaya, Malaysia
abdelrahman.osman.06@mmu.edu.my,somnuk.amnuaisuk@mmu.edu.my,ckho@mmu.edu.my

Abstract

Feature Model (FM) is approved as a successful
technique to model variability in Software Product Line
(SPL), therefore it is very important to produce error-
free FM. Inconsistency in FM is addressed as key
challenge in validation of FM. This paper completes the
knowledge-base(KB) method for validating FM by
defining a new operation, namely inconsistency-
prevention. First the inconsistency in FM is categorized
into four groups as a prerequisite process for
inconsistency-prevention. Then the scalability of KB
method for validating FM is tested. Empirical results
for each operation are presented and discussed. The
empirical results are employed to illustrate scalability
and applicability of the proposed knowledge-base
method.

1. Introduction and Motivations

FM is considering as one of the successful methods for
applying variability in SPL [1]. Therefore it is very
important to produce error-free FM, this process is non-
feasible manually. Inconsistency detection is introduced
in [2] as a research challenge. Inconsistency occurs from
contradictions in constraint dependency rules. It is very
complicated because it has different formats and it can
occur between groups of features or between individual
features. In our previous work [3], we introduced a
method to validate a FM based on mapping FM to first
order logic, one-to-one mapping and represent domain
engineering as a KB. The proposed method [3] defines
and provides auto-support for three operations for
validating FM, namely: explanation, dead feature
detection, and inconsistency-detection. The proposed
operation inconsistency-detection can detect only
inconsistency between individual features. In this paper

we enhance this operation by illustrating how to map all
inconsistency formats to one-to-one format. And rather
than detect inconsistency, we improve the proposed
method by defining a new operation that aims at
preventing inconsistency in FM, this process is explore
the KB(domain engineering) and according to specific
states new rules added to KB. The overall contribution
of the proposed method is the validating of FM within
domain engineering process.

 Scalability is one of the main factors that define the
applicability of the methods that deal with FM.
Empirical results approved (in literature) to test
scalability. In this paper we test the scalability of the
proposed method (four operations).
Related work is discussed in section 2. In section 3 we
define the new operation in FM validation
(inconsistency-prevention). Empirical results are
presented and discussed in section 4. Finally, discussion
and conclusion in section 5.

2. Related Work

Mannion [4] was the first to connect propositional
formulas to feature models., but the model did not detect
the dead features or inconsistency. Zhang et al.[5] defined
a meta-model of FM using UML core package. Zhang
only validated consistency-check during configuration.
Benavides et al. [6] proposed a method for mapping
feature model into constraint solver. This model was
mainly developed for the analysis of SPL-based FM,
rather than validating it. Batory[7] proposed a coherent
connection between FMs, grammar and propositional
formulas, represented basic FMs using context–free
grammars plus propositional logic. This connection
allows arbitrary propositional constraints to be defined
among features and enables off-the-shelf satisfible solvers
to debug FM. Batory’s method validated FM within
application engineering process (in product derivation),
and it detected one type of inconsistency (one-to-one) and

VaMoS'09

169

did not detect the dead features. Although Janota[8] used
higher-order logic to reason feature models, unfortunately
no real implementation has been described. Thang[9]
defined a formal model in which each feature was
separately encapsulated by a state transition model. The
aim of the study is to improve consistency verification
among features, there is no mention for inconsistency or
dead features. Czarnecki[10] proposed a general
template-based approach for mapping feature models,
and used object-constraint language (OCL) in [11] to
validated constraint rules. In [3] we proposed rules for
consistency constraint check. These rules are different
from other methods (to validate consistency check) by
considering and dealing with variation point constraints.
 Trinidad[12] defined a method to detect dead features
based on finding all products and search for unused
features. The idea is to automate error detection based on
theory of diagnosis [13]. This model mapped FM to
diagnose-model and used CSP to analyze FM. Our
proposed method to detect dead features [3] has less cost
than Trinidad’s because it searches only in three
predefined cases, i.e. in domain engineering process.
Validating FM in domain engineering is one of the main
contributions of our proposed method. Segura et al.
[14] used atomic set as a solution for the simplification of
FMs. Segura scaled the work using random data
generated by FAMA [15]. White et al. [16] proposed a
method for debugging feature model configurations. This
method scales as models with over 5,000 features are
randomly generated by FAMA. Our proposed method is a
collection of predicates; therefore it has high degree of
flexibility, e.g. it can be partitioned regarding specific
features. As we proved in [3], the proposed method is
the first that deals with inconsistency. Moreover it
addresses the validation operations (inconsistency-
detection, dead feature detection, and explanation. In
this study, we define inconsistency-prevention as a fourth
operation applied to domain engineering (rather than
configure a solution and validate it), which enhances the
maturity of SPL. In the next section we illustrated the
fourth operation (of the proposed KB method [3])
inconsistency prevention.

3. Knowledge-base method to validate FM:

Inconsistency-prevention Operation

In our previous work [3], we defined and illustrated
three operations: i) explanation, ii) dead feature
detection, and iii) inconsistency-detection. In this
section inconsistency-prevention is defined as fourth
operation, and later experiments (which are designed to
evaluate scalability of our proposed operations) are
explained and results are discussed. In addition to
validating existing FMs, the proposed method can be

used to prevent inconsistency in FM by adding new
relations (exclude/require).
 The following parts of this section are defining the
prerequisite process and illustrating the rules of
inconsistency-prevention operations.

3.1. Prerequisite Process
 The prerequisite process for inconsistency-prevention
and inconsistency-detection operations is converting all
forms of inconsistency into one-to-one relation form.
Inconsistency Forms

Inconsistency in FM, could be categorized in four
groups:

Many-to-Many inconsistency:
In many-to-many inconsistency a set requires other set
while the required set excludes the first one. E.g.
({A1,A2,…,An} requires {B1,B2,…,Bn})and
({ B1,B2,…,Bn} excludes{ A1,A2,…,An})
Other possible scenario, a set can requires other set
while some features of the required set excludes some
features of the first one. e.g.:
((A,B,C) requires (D,E,F)) and ((G,F,H) excludes (A ,
B,C)).
The constraint dependency could be between two or
more sets.

Many-to-One inconsistency:
A set of features has constraint dependency relation
(require/exclude) with one feature while this feature has
a contradiction relation to this set or to some of its
elements. e.g.
((A,B,C) requires D) and (D excludes (B,C)).

One-to-Many inconsistency:
One feature has constraint dependency relation
(require/exclude) with a set of features while this set has
a contradiction relation to this feature.

One-to-One inconsistency:
One feature has a constraint dependency with one
feature while the second feature has a contradiction
relation to the first feature. e.g.(A requires B) and (B
excludes A).
 In [3], we defined and illustrated five rules to detect
One-to-One inconsistency. To detect other forms of
inconsistency we need first to extend Many-to-Many,
Many-to-One, and One-to-Many to represented as
feature-to-feature relation. The following rule extends
forms of inconsistency to feature-to-feature relation:

�i,j {Ai |1<= i <= n} relation {Bj | 1<= j <= m} � Ai

relation Bj

Where relation represents constraint rule
(excludes/requires).
Example:
Many-to-Many inconsistency ((A,B) require (D�E)) and ((
G,E)excludes(A,B)) can be extended to ((A requires D) and
(A requires E) and (B requires D) and(B require E) and (G
excludes A) and (G excludes B) and (E excludes A) and (

VaMoS'09

170

E excludes B)) feature-to-feature relation.

3.2. Inconsistency-prevention Rules

Inconsistency in feature model is a relationship between
features that cannot be true at the same time[2].
To avoid inconsistency (prevent inconsistency) the
following rules are proposed:

i. �x,y,z:type(x,variant)�type(y,variant)�requires_v_v(x,y)
�type(z,variant)�requires_v_v(y,z)� requires_v_v(x,z).

ii. �x,y,z:type(x,variationpoint)�type(y,variationpoint)�req
uires_vp_vp(x,y)�type(z,variationpoint)�requires_vp_vp(
y,z)�� requires_vp_vp(x,z).

iii. �x,y,z:type(x,variant)�type(y,variationpoint)�requires_v
_vp(x,y)�type(z,variationpoint)�requires_vp_vp(y,z)� �

requires_v_vp(x,z).
iv. �x,y,z:type(x,variant)�type(y,variant)�requires_v_v(x,y)

�type(z,variationpoint)�requires_v_vp(y,z) �
requires_v_vp(x,z).

v. �x,y,z:type(x,variant)�type(y,variant)�requires_v_v(x,y)
�type(z,variant)�excludes_v_v(y,z)� excludes_v_v(x,z).

vi. �x,y,z:type(x,variationpoint)�type(y,variationpoint)�req
uires_vp_vp(x,y)�type(z,variationpoint)�excludes_vp_vp
(y,z)�� excludes_vp_vp(x,z).

vii. �x,y,z:type(x,variant)�type(y,variant)�requires_v_v(x,y)
�type(z,variationpoint)�excludes_v_vp(y,z)�
excludes_v_vp(x,z).

 The outputs of this operation are new constraint
dependency rules added to the KB (domain
engineering) to sustain the consistency.

4. The Experiment
 We developed an algorithm to generate random FM.
(predicates form).We have three assumptions: i) each
variation point and variant has unique name, ii) each
variation point is orthogonal, and iii) all variation points
have the same number of variants. The main parameters
are the number of variants and the number of variation
points. The remaining eight parameters (common
variants, common variation points, variant requires
variant, variant excludes variant, variation point requires
variation point, variation point excludes variation points,
variant requires variation point, and variant excludes
variation point) are defined as a percentage. The number
of variant-related parameters (such as; common variant) is
defined as a percentage of the number of variants. The
number of variation point-related parameters (such as;
variant requires variation point) is defined as a percentage
of the number of variation points. For each number of
variant/variation point we made ten experiments, and
calculated execution time as average. The experiments
were done with the range (1000-20000) variants, and
percentage range of 10%, 25%, and 50%.

4.1. Empirical Results

4.1.1. Explanation: To evaluate the scalability of this
operation, we define additional parameter, the predicate

select(V): where V is random variant. This predicate
simulates user selection. Number of select predicate
(defined as a percentage of number of variants) is added
to the KB (domain engineering) for each experiment, and
the variant V is defined randomly (within scope of
variants). Figure 2 illustrates the average execution time.
4.1.2. Dead Feature Detection: Figure 3 illustrates the
average execution time. For (20,000) variants and 50% of
constraint dependency rules, the execution time is 3.423
minutes which can be considered good time, White et
al.[16] scaled their work by 5,000 feature in one minute.
The output of each experiment is a result file containing
the dead variants.
4.1.3. Inconsistency-Detection: Figure 4 illustrates the
average execution time to detect inconsistency in FM
range from 1000 to 20,000 variants.
4.1.4 Inconsistency-prevention: new dependency rules
(requires/excludes) should be added to the KB to prevent
inconsistency. Figure 5 illustrates the average execution

time to prevent inconsistency in FM range from
1000to20,000variants.

0

20

40

60

80

Variants

Ti
m

e
(S

ec
)

10% 0.0278 0.7187 2.8498 11.6938

25% 0.0669 1.6431 7.3158 31.9844

50% 0.1438 3.4994 15.9781 60.7373

1000 5000 1E+04 2E+04

Figure 2: Explanation Results

5. Conclusion
 The proposed method deals with the complexity of
validating product line based feature model. It is the
first method that detects an inconsistency in FM of all
types. Moreover, it explores the existing relations and
prevents future inconsistency. The validation process
(dead feature detection, inconsistency-detection, and
inconsistency-prevention) should be applied to domain
engineering which guarantees error free domain
engineering. Error-free domain engineering (one of the
main contributions of the proposed method) promises
generation of valid applications. Many methods are
applying empirical results to test scalability by
generating random FMs [5, 13, 16]. Comparing with
literature, our test range (1000 – 20,000 features) is

VaMoS'09

171

sufficient to test scalability.

0

20

40

60

80

100

120

140

160

180

200

220

Variants

Ti
m

e
(S

ec
)

10%
25%
50%

10% 0.234 5.775 23.103 95.275

25% 0.297 7.853 31.487 131.506

50% 0.484 11.981 48.137 205.393

1000 5000 1E+04 2E+04

Figure 3: Dead-feature Detection Result

0

20

40

60

80

100

120

Variants

Ti
m

e
(S

ec
)

10%
25%
50%

10% 0.193 4.89 19.5 78.222

25% 0.212 5.265 21.013 84.415

50% 0.246 6.024 24.156 97.309

1000 5000 1E+04 2E+04

Figure4:Inconsistency-Detection

0

20

40

60

80

Variants

Ti
m

e
(S

ec
)

10%
25%
50%

10% 0.096 0.722 1.706 2.687

25% 0.684 4.444 10.872 17.021

50% 2.853 19.515 34.637 67.515

1000 5000 1E+04 2E+04

Figure 5: Inconsistency-prevention Results

6. References

[1] Krzysztof Czarnecki, ”Generative Programming: Principles and
Techniques of Software Engineering Based
on Automated Configuration and Fragment-Based Component Models”,
PhD Thesis Technical University of Ilmenau, October 1998.
[2] Don Batory, David Benavides, Antonio Ruiz-Cortés,
“Automated Analyses of Feature Models: Challenges Ahead”,
Special Issue on Software Product Lines ,Communications of
the ACM, December 2006.
[3] Abdelrahman Osman. Elfaki , Somnuk Phon-Amnuaisuk, Chin Kuan
Ho,” Knowledge Based Method to Validate Feature Models”, in the
proceeding of 12th international conference of software product line,
Limerick Ireland, 2008.
[4] M. Mannion , “Using First-Order Logic for Product Line Model
Validation”, Paper presented at the Second Software
Product Line Conference (SPLC2), San Diego, CA. , 2002.
[5] Wei Zhang, H. Z., and Hong Mei, “A Propositional Logic-Based
Method for Verification of Feature Models”, Paper
presented at the 6th International Conference on Formal Engineering
Methods (ICFEM),2004.
 [6] David Benavides, P. Trinidad, and A.Ruiz-Cortes, “Automated
Reasoning on Feature Models”, Advanced
Information Systems Engineering (Vol. 3520/2005,), Springer, Berlin
Heidelberg, 2005, pp. 491-503.
[7] Don Batory,”Feature Models, Grammars, and Propositional
Formulas”, Paper presented at the 9th
International Software Product Lines Conference (SPLC05), Rennes,
France, 2005.
[8] Mikolas Janota, Joseph Kiniry, “Reasoning about Feature Models in
Higher-Order Logic”, Paper presented at the 11th International Software
Product Line Conference (SPLC07), 2007.
[9] Nguyen Truong Thang, “Incremental Verification of Consistency in
Feature-Oriented Software”, PhD thesis,Japan Advanced Institute of
Science and Technology , September, 2005.
[10] Krzysztof Czarnecki, Michal Antkiewicz, “Mapping features to
models: A template approach based on superimposed variants”, Paper
presented at the 4th International Conference on Generative
Programming and Component Engineering (GPCE'05), Tallinn, Estonia,
2005.
[11] Krzysztof Czarnecki, Krzysztof Pietroszek, “Verifying Feature-
Based Model Templates Against Well-Formedness OCL Constraints”,
Paper presented at the 5th international
conference on Generative programming and component engineering
(GPCE'06), 2006.
[12] Pablo Trinidad, David Benavides, and Antonio Ruiz-Cort´es,
“Isolated features detection in feature models”, Paper presented at the
Advanced Information Systems Engineering
(CAiSE), Luxembour, 2006.
[13] Pablo Trinidad , D. Benavides, A. Dura´n, A. Ruiz-Cortes,and M.
Toro, “Automated error analysis for the agilization of feature
modeling”, systems and software,doi:10.1016/j.jss.2007.10.030, 2008.
[14] Sergio Segura ,” Automated Analysis of Feature Models using
Atomic Sets”, paper in proceeding of 12th international conference of
software product line, Limerick Irland,2008.
[15] Pablo Trinidad, David Benavides, Antonio Ruiz-Cort?, Sergio
Segura, Alberto Jimenez, "FAMA Framework," splc,pp.359, 2008 12th
International Software Product Line Conference, 2008.
[16] Jules White, Doulas Schmidt, David Benvides, Pablo Trinidad,
Antonio Ruiz-Cortes, “Automated Diagnosis of product line
configuration errors on feature models”, paper in proceeding of 12th
international conference of software product line, Limerick Irland,2008.

�

�

�

�

�

VaMoS'09

172

VMWare: Tool Support for Automatic Verification of Structural and
Semantic Correctness in Product Line Models

Camille Salinesi1, Colette Rolland1, Raúl Mazo1,2
1 CRI, Université Paris 1 – Sorbonne, 90, rue de Tolbiac, 75013 Paris, France

2 Ingeniería & Software, Universidad de Antioquia, Medellín, Colombia
{Camille.salinesi, Colette.Rolland}@univ-paris1.fr, raulmazo@gmail.com

Abstract

The verification of variability models is recognized
as one of the key challenges for automated
development of product lines. Some computational
tools have been proposed to verify product line models
and product line configurations models. VMWare is a
tool integrating different criteria to verify structural
and semantic correctness of models derived from the
FORE metamodel. Our tool gives the possibility of (i)
build feature-based product line models and product
line configuration models, (ii) verify their structural
and semantic correctness in a completely automated
manner and (iii) import/export them in XMI files.

1. Introduction

Feature Modelling is a mechanism to represent
requirements in the context of Software Product Lines
(SPL). A Feature Model (FM) defines features and
their usage constraints in product-lines (PL). Their
main purposes are: (i) to capture feature commonalities
and variabilities; (ii) to represent dependencies
between features; and (iii) to determine combinations
of features that are allowed and disallowed in the
product line. A feature is a product characteristic that
some stakeholders (e.g. users, sellers, engineers,
customers) consider important to include in the
description of the product line.

Automated analysis of FMs is recognized in the
literature as an important challenge in PL engineering
and is considered as an open issue by many SPL
researchers [1], [2], [4], [10]. Verification of FMs is
important for industry because any error in a Product
Line Model (PLM) will inevitably affect the
configuration models (PLCMs) and thereafter final
products. By verification of FMs we mean the formal
process of determining whether or not they satisfy well
defined verification criteria. Verification criteria can be
determined either by means of properties of the

specification itself, or by means of a collection of
properties of some other specification. FMs correctness
includes structural correctness and semantic
correctness.

This paper presents a prototype tool for PLMs and
PLCMs construction and verification. The tool is based
on a framework for the automated analysis of feature
models. Broadly speaking, it allows: (i) creating PLMs
and PLCMs; (ii) verifying structural correctness
criteria of PLMs and PLCMs; (iii) verifying semantic
correctness of PLMs; and (iv) verifying PLCMs in
regard to PLMs. The implementation is based on a
three-layer architecture and uses XMI files as a
mechanism to exchange the FMs with other tools.

The remainder of the paper is structured as follows.

Section 2 gives a brief overview of feature modeling
and of the verification process. Section 3 describes the
functionality and provides some implementations
details of the framework. Section 4 concludes the paper
and describes future works.

2. Feature Modeling and Verification

Feature modeling is the activity of identifying
externally visible characteristics of products in a
domain and organizing them into a feature model. The
notation considered in this paper is FORE notation
(Feature Oriented Requirements Engineering) [3].

The characteristics of the FORE notation are:
� a feature diagram is a Directed Acyclic Graph

(DAG);
� a feature is represented by a node of this graph;
� relationships between features are represented by

links. There are two types of relationship, namely
variant dependency and transverse dependency;

� variant dependencies can be mandatory or
optional. The collection of features related by
variant dependencies take the form of a tree;

VaMoS'09

173

� transverse dependencies can be of two kinds: the
excluding one or the requiring one;

� optional relationships with the same father can be
grouped into a bundle. A relation can be member
of one and only one bundle;

� a bundle has a cardinality that indicates the
minimal and maximal number of features that can
be chosen. The meaningful cardinalities are: 0..1,
1, 0..N, 1..N, N, p, 0..p, 1..p, p..N, m..p, 0..* and
1..*;

� graphically, a bundle of variant dependencies is
represented by an arch that related all the
implicated relations;

The FORE notation fits the construction of PLMs,

while eliminating many ambiguities. However, there
are no well established guidelines to identify structural
and semantic errors in FORE models.

The FM verification process that we propose can
be summarized in Figure 1. The process is structured
around two cycles, the first one corresponds to PLMs
verification and the second one corresponds to PLCMs
verification.

Figure 1. FORE-based PLMs and PLCMs correctness
verification process.

2.1. Verify the structural correctness criteria of
the Feature Model

Structural correctness concerns: (i) the correspondence
between the model and the language in which the
model is written; and (ii) the alignment between the
model and a set of structural properties that any model
of the same type must respect.

The purpose of the VMWare tool is to automatically
verify FORE-based models according to a collection of
well defined criteria [11]. To achieve this, we have
divided the collection of criteria into three groups: (i)
general criteria that every FORE-based FM shall

respect; (ii) criteria specific to PLMs; and (iii) criteria
specific to PLCMs.

In order to build a complete and consistent list of
criteria, we undertake a state of the art of
computational tools for construction of variability
models supporting their automated verification. A
summary of the criteria supported by the analysed tools
are presented in Table 1.

Table 1. Structural and semantic correctness criteria
(not) implemented in related tools.

Tool

V
M

W
ar

e

Fe
at

ur
e

Pl
ug

in
 [5

] /

D
E

C
IM

A
L

 [8
]

X
Fe

at
ur

e¹
 [1

3]
 /

Pu
re

::
va

ri
an

ts
² [

7]

R
eq

ui
lin

e³
 [1

2]

FA
M

A
 [9

]

Modeling Formalism FORE
Cons-
traints

FOD
A* /
Class

FOR
E

FOR
M

FOR
E

PLCM Verification Y Y Y Y Y
PLM Verification Y N Y Y Y
Criteria

Root uniqueness Y N Y Y N
Child-father
uniqueness

Y Y Y Y N

Ordered cardinality Y N N N N
Applicable
cardinality

Y N N N N

Optional features
and include
dependencies
coherence

Y N N Y Y

Mandatory features
and exclude
dependencies
coherence

Y N N Y Y

Well limited
cardinalities

Y N Y N N

Consistency
between transversal
dependencies and
cardinalities

Y N N N N

No dead features Y N N N Y

St
ru

ct
ur

al

DAG Structure Y ? Y Y N
Richness – No void
feature models

N ? N ? Y

PLCM’s compliance
to the corresponding
PLM

Y Y Y Y N

Traceability P ? P Y ?
Uniqueness N ? ? N N
Pertinence N ? ? Y N

Se
m

an
tic

Modifiability N ? ? Y ?
Legend: Y = Yes, N = No, P = Partially, ? =
unavailable information
* FODA with cardinality-based feature modeling.
¹http://www.pnp-software.com/XFeature/
²http://www.software-acumen.com/purevariants/feature-models
³http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline

1. Create VMs.

2:
PLCMs

2. Verify structural
correctness of VMs

3. Verify semantic
correctness of VMs

1:
PLM

VaMoS'09

174

The criteria that we have chose for VMWare are
defined bellow.

General criteria
1 Root uniqueness: The PLM should have only one

root element.
2 Child-father uniqueness: A child feature should

have one and only one father.
3 Tree structure: Variability structure of PLM, as

well as PLCMs should be represented as
connected and acyclic graphs.

PLM criteria
1 Ordered cardinality: All features grouped by a

cardinality should be ordered in a consecutive
manner.

2 Applicable cardinality: All features intervening in
a cardinality should be optional.

3 Optional features and include dependencies
coherence: This state of structural correctness
criteria is respected when a feature is not at same
time: mandatory and exclude dependent.

4 Mandatory features and exclude dependencies
coherence: The state of structural correctness
criteria is respected when a feature is not
simultaneously: optional and require dependent.

5 Well limited cardinality: The state of structural
correctness is respected when: (i) superior limit >=
||bundle||; and (ii) there are no cardinalities where
both boundaries have 0 value (e.g. “0,0”), or the
superior limit is lower than the inferior one, or
where the inferior limit is a negative number.

6 Consistency between transversal dependencies
and cardinalities: This criterion is determined by
three conditions: (i) cardinality of bundle should
be well formed; (ii) if a feature is involved in a
bundle, then this feature cannot be related by a
transverse relationship with other feature of the
same bundle; and (iii) the same feature must not
belong to two different bundles.

7 No dead features: It should be possible to include
every feature in a PLM in at least one PLCM.

8 DAG structure: In a PLM it is forbidden to find a
collection of features forming a cycle by means of
Transversal Dependencies and/or Variant
Dependencies. In order to evaluate this criterion,
variability dependencies are enriched with a
direction from the father to child. Transversal
dependencies preserve its original directions.
Thus, errors like exclusion (inclusion) of an
ancestor and vice versa are identified.

Each of these criteria has been formally specified

using first order logic predicates [11]. This allows

implementing verification systematically using a SAT-
like solver. For example, criterion child-father
uniqueness was formally defined as follow:

1)()())(

)(()()(
)(.),(

�����

��

���

iii

ii

ii

PCPCPoptionalC

PMandatoryCPchildOfCCreChildFeatu
PureFatherFeatPLMCfeaturePfeature

�

Where “●” represents a mandatory and “○” an optional
relationship between father and child features.

3. Implementation

The technologies used in the development process of
our tool are:
(i) The Microsoft .NET Framework v2.0.50727

provided the general libraries.
(ii) Its source code was written using Microsoft Visual

Studio 2005.
(iii) XmlExplorer Controls V1.0.0.0 was used in order

to handle XML files, to record models and to
handle interoperability with other CASE tools.

Functionalities
VMWare tool allows creating three types of
specifications:
(i) Product line models using the FORE notation.
(ii) Product configuration models, in the adequate

subset of FORE as described earlier.
(iii) Textual product line constraint specifications.

Our goal is to support the specification of other
kinds of models such as goal models, aspect models,
etc. A project is a set of several models, one by default.
It includes the following functionalities:
1. Create a PLM.
2. Export and import PLM and PLCMs using an

XMI file. This functionality allows
communicating models from and to other
applications.

3. Verify structural and semantic (partially)
correctness of product line models.

4. Create and verify PLCMs, compared to a PLM.
The set of verified criteria on PLCMs are: root
uniqueness, child-father uniqueness, feature
existence and PLM’s constraint satisfaction.

Example
In VMWare, users can create or open either a project
or a specific model. The “verification” menu offers to
users the functions that allow choosing the different
verification criteria. Figure 2 gives an example of the
feedback provided by the tool after the verification of
the structural correctness of a FM. In Figure 2, Feature

VaMoS'09

175

1 and Feature 2 are mandatory features that are linked
by an excludes-type relationship.

Figure 2. Identification of structural error in a PLM.

In order to verify semantic correctness of a PLM, it
is necessary to check: (i) PLCMs’ compliance to the
corresponding PLM; and (ii) PLM’s richness and
traceability, uniqueness, pertinence, modifiability and
usability of each feature. In order to check PLCMs’
compliance, it is necessary to verify the Feature
existence (every feature in a PLCM must also be a
member of the PLM) and the PLM’s Constraint
satisfaction (PLCMs’ structure must to be according to
PLM’s structure and restrictions). At this moment, we
are working in formal definition of these criteria; they
are not implemented in our tool yet.

4. Conclusions and Future Works

Our goal is to develop a generic method that would
automatically help verify any kind of specification
based on one or several VMs. We believe that the
semantic verification criteria can be defined in a
generic level at which any model can be checked. We
are currently experimenting the use of constraint
languages [6] on top of which these generic semantic
verification criteria would be specified. The semantic
verification process shall consist in a transformation of
the verified model into a constraints program, and in a
semantic verification of the constraints program. So far
structural verification is concerned, we hope to be able
to instantiate meta model-specific verification criteria
from an ontology on generic criteria associated to an
ontology on general meta-model concepts.

VMWare is not a mature tool yet, and many
improvements remain, such us: (i) to support the

definition and verification of VMs; (ii) to implant the
multi-model verification criteria to validate consistency
between PLM and PLCMs as well as between multiple
PLMs; (iii) to implant other semantic correctness
properties to verify and validate, like traceability,
uniqueness, pertinence and modifiability of features
and its relationships; and (iv) to support incremental
verification.

References

[1] D. Batory, “Feature models, grammars, and propositional
formulas”, Software Product Lines Conference, LNCS 3714,
pages 7–20, 2005.
[2] D. Batory, D. Benavides, and A. Ruiz-Cortés,
“Automated analysis of feature models: Challenges ahead”,
Communications of the ACM, December, 2006.
[3] D. Streitferdt, “Family-Oriented Requirements
Engineering”, PhD Thesis, Technical University Ilmenau,
2003.
[4] Kim Lauenroth, Klaus Pohl, “Towards Automated
Consistency Checks of Product Line Requirements
Specifications”, ACM/IEEE Intl. Conference on Automated
Software Engineering, 2007, pp. 373-376.
[5] M. Antkiewicz, K. Czarnecki, “FeaturePlugin: feature
modeling plug-in for Eclipse”, OOPSLA’04 Eclipse
Technology eXchange (ETX) Workshop, pp. 67-72.
[6] O. Djebbi, and C. Salinesi, "Towards an Automatic PL
Requirements Configuration through Constraints Reasoning",
Int. Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), Essen, Germany, January 2008.
[7] O. Spinczyk, D. Beuche, “Modeling and Building
Software Product Lines with Eclipse”, International
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.
[8] P. Padmanabhan, R. Lutz, “Tool-Supported Verification
of Product Line Requirements”, Automated Software
Engineering, Vol. 12, No. 4, 2005, pp. 447-465.
[9] P. Trinidad, A. Ruiz-Cortés, D. Benavides, S. Segura, A.
Jimenez, “FAMA Framework”, 12th Int. Software Product
Line Conference (SPLC), 2008.
[10] Klaus Pohl, Gunter Bockle, Frank van der Linden,
“Software Product Line Engineering: Foundations, Principles
and Techniques”, Springer, July 2005.
[11] Raul Mazo, Camille Salinesi, “Methods, techniques and
tools for product line model verification. Research report”,
Centre de Recherche en Informatique CRI, Université Paris 1
Panthéon Sorbonne, 2008. In: http://halshs.archives-
ouvertes.fr/docs/00/32/36/75/PDF/Methods_Techniques_and
_Tools_for_PLM_Verification.pdf
[12] T. von der Maßen, H. Lichter, “RequiLine - A
Requirements Engineering Tool for Software Product Lines”,
Software Product-Family Engineering, Springer LNCS 3014,
2004.
[13] V. Cechticky, A.Pasetti, O. Rohlik, and W.
Schaufelberger, “Xml-based feature modelling”, LNCS,
Software Reuse: Methods, Techniques and Tools: 8th ICSR
2004. Proceedings, 3107:101–114, 2004.

VaMoS'09

176

A Tool for Modelling Variability at Goal Level

Christophe Gnaho1, 2, Farida Semmak1, Regine Laleau1
University of Paris XII - Val de Marne, LACL, France

1 {semmak, laleau}@univ-paris12.fr
University of Paris Descartes, France

2 gnaho@math-info.univ-paris5.fr

Abstract

This paper is a contribution to the improvement of
requirements engineering in the context of the Cycab
domain. The Cycab is a public vehicle with fully
automated driving capability. In a previous work we
proposed some extensions to the KAOS goal-oriented
metamodel in order to enable explicit representation of
variability at the early stage of requirements
engineering. In this paper, we are interested in a
software tool that implements the extended KAOS
metamodel. The tool provides a GUI, which helps the
designer to model Requirements Family Model (RFM)
and then derive, according to the stakeholders needs,
Specific Requirements Models (SRM) from the family
model.

1. Introduction

This work is done as part of the TACOS1 project
whose aim is to define a component-based approach to
specify trustworthy systems from the requirements
phase to the specification phase, in the Cycab
transportation domain [1].

We need a requirements engineering approach,
which addresses the early stage of requirements
engineering during which stakeholders intentions are
explored and different alternative ways to satisfy these
intentions are investigated. Goal approaches have
proven usefulness for that purpose.

Furthermore, the development of Cycab vehicles
prototype takes time, requires frequent testing and
leads to constant evolution. Therefore, the embedded
software that makes the cycab vehicle run is subject to
ongoing changes. Thus, Cycab software development
would be greatly productive if design effort could be
capitalized for reuse. One of the ways to accomplish
this is through variability modelling.

1 The TACOS project (Ref. ANR-06-SETI-017) is
partially supported by the French National Research
Agency

In previous work [5], we have presented some
extensions to the KAOS goal oriented metamodel, in
order to enable explicit representation of variability at
goal level. This paper presents a software prototype
that implement the extended metamodel. The tool helps
the designer to build Requirements Family Model
(RFM) and then to derive according to the stakeholders
needs, Specific Requirements Models (SRM) from the
family model.

The paper is organized as follows: Section 2
presents an overview of our approach. The
implementation of the extended KAOS metamodel is
presented in Section 3. Section 4 discusses related
work. Finally, Section 5 concludes with some remarks
about the results and future work.

2 Background

2.1 Overview of the supported approach

In the proposed approach, we attempted to apply
reuse-based techniques at goal level. These techniques
are inspired by the field of software product lines
engineering [3] and domain engineering [4]. Figure 1
summarizes this approach.

Figure 1. Overview of the approach

The domain level provides the Requirements Family
Model (RFM), which enables the description of the
large diversity of applications of the same domain by

VaMoS'09

177

identifying and expressing the common and variable
requirements at goal level. The application level
enables the building of specific requirements model. Its
main component is the Building and adapting process
that purpose is to derive the specific requirement model
from the RFM, according to the needs of the
stakeholders.

To specify a Requirements Family Model, we have
chosen the KAOS (Knowledge Acquisition in
autOmated Specification) goal-oriented approach [2].
However, this approach has not been originally
designed to address variability-based systems. For this
purpose, we proposed some extension in previous work
in order to explicitly take into account variability
concerns [5]. We call this extension Kaos Variability
MetaModel (KVMM).

2.2 The KVMM

The main objective of the extensions made to
KAOS is to make explicit 'what does vary' in the
KAOS sub-models and 'how does it vary'. The 'what
does vary' is captured thanks to the concept of
variation point while the 'how does it vary' is described
through the concepts of facet and variant. The
concepts of facet and variant, together with the various
relationships between them form the variability model.
This model focuses on the relevant domain knowledge
that presents multiple dimensions. It aims at structuring
and organizing this knowledge for understanding and
reusability.

The concept of variation point provides a means to
make explicit variability in the KAOS sub-models. It
relates these sub-models to the variability model

A facet is defined as a viewpoint or a dimension
having an interest for a domain. A facet is described by
the properties: name, description. For instance, the
facet ��� has the name ��� ��	
���
���� ����� and the
description ���	�������������	�����������.

A facet is closely attached to one or more variants.
A variant is defined as a way to realize a facet. For
example, a Cycab may be localized by using a GPS
sensor (Global Positioning System) or a WPS sensor
(Wifi Positioning System) or an internal sensor or a
combination of those three variants. Thus, to the facet
����� ��	
���
���� ����� are attached the following
variants: ����� ����� ���� ����� ���� ��� �
�� ����� !. A
variant is described by the following properties: name,
description, cost, rationale. For instance, one of the
variant of the facet F1 has a name ������ a description
���	
���
���� "#� ��
�� ��$� ��$�
�� � ��
$
���� ���� % ���
��%%� ��� �
�������, a cost �&� and a rationale ��%%�	���� �%�
�����	
������
 �
��������� �������"#���$��"������$��.

3 Implementing the KAOS Variability
MetaModel (KVMM)

In this section, we present a prototype
implementation of the KVMM. The aim of this
prototype is to provide guidance for the three following
tasks: specification of a RFM as instance of the
KVMM, generation of specific models from the RFM,
and specification (and verification) of constrains over
these models.

Three main options can be envisaged to develop this
tool: (1) extending the KAOS Objectiver tool, (2)
developing our own tool by using a generator for
model editors such as Eclipse Modeling Framework
(EMF) along with model transformation languages, (3)
adapting a generic variability environment. We
eliminated the first option because Objectiver is not an
open source tool and we chose the third option because
this solution significantly reduces the development
effort. We adopted XFeature [6], [7] a generative
environment for family instantiation to implement our
prototype.

3.1 The modeling approach

XFeature provides a modeling approach that
explicitly recognizes two main levels of modeling:
family level and application level. Figure 2 shows an
overview on how this modeling approach is applied to
the KVMM.

Figure 2 the modeling approach

At the family level, the user can create a
Requirements Family Model (RFM) as instance of the
KVMM. At the application level, the RFM is then
automatically transformed thanks to transformation
rules, in order to generate the Specific Requirement
MetaModel (SRMM). This later defines the language
that should be used to express the Specific
Requirement Models (SRM).

In the present version, XFeature does not provide a
tool to create and edit the KVMM, thus, it is therefore
manually created and integrated.

3.2 The tool architecture
Each metamodel (KVMM and SRMM) is specified

as an XML schema.

VaMoS'09

178

Figure 4: Model editors GUI

4 Related Work
It has been recognized that the effective variability

modelling is dependent on the available tool support. In
the context of SPL, many tools have been proposed to
support variability modelling [6], [8], and [9]. Most of
them have implemented models integrating feature
trees, interrelations between features, cardinalities and
so on. However, these models mainly focus on the
specification phase. The prototype presented in this
paper allows support of variability modeling at the
early stage of requirements engineering.

5 Conclusion
In this paper, we have presented a software

prototype to support variability modelling at goal level.
This tool aims at helping the designer to create
requirements model for a family of application and
then derive specific requirements model. The
implementation of this tool is based on Xfeature, a
configurable environment that supports the creation of
product family.

Future work should take place in two areas: (1)
adapting Xfeature to automatically support the creation
of KVMM, and (2) customizing the tool in order to
obtain graphical notations similar to the ones proposed
in Objectiver (Kaos tool).

6. References
 [1] Parent, M., "Automated public vehicle: a first step

towards the automatic highway", Proc. Of the World
Congress on Intelligent , 1998

[2] Lamsweerde, A.: "From Systems Goals to Software
Architecture", In Formal Methods for Software
Architectures, LNCS vol. 2804, Springer, 2003

[3] Pohl, K., Bockle, G., van der Linden, F., Software
product line engineering: Foundations, Principles, and
Techniques, Springer, 2005

[4] Kang, S., Cohen, J., Hess, W., Novak, Peterson S.:
"Feature-oriented domain analysis (FODA) feasibility
study", CMU/SEI-90-TR-21, 1990

[5] Semmak, F. & Al, "Extended Kaos to support Variability
for Goal oriented Requirements reuse", Int. Workshop
Model Driven Information Systems Engineering with
Caise'2008

[6] Cechticky V., & Al, 'XML-based Feature Modelling',
Software Reuse: Methods, Techniques, and Tools (ICSR),
LNCS Series, Vol. 3107, Springer-Verlag, 2004

[7] Pasetti, A, & Al, technical note on a concept for the
Xfeature tool, 2005

[8] Antkiewwiez, M & Czarnecki, K, "FeaturePlugin :
Feature modeling Plug-In for Eclipse", OOPSLA'04,
ETX Workshop, 2004

[9] Benavides, D, & Al, 'Tooling a framework for the
Automated analysis of features models", 1st Workshop
on Vamos, Limerick, Ireland, 2007

VaMoS'09

180

2005
No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys‐
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und ‐methoden in
Wirtschaftsinformatik und Information Systems“

Previously published ICB ‐ Research Reports

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming
Exercises with JACK“

No 27 (December 2008)
Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im
deutschsprachigen Raum ‐ Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Müller‐Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi‐Touch beim Softwaredesign am
Beispiel der CRC Card‐Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo‐Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software‐intensive Systemsʺ

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess‐management‐
Kreislaufʺ

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Softwareʺ

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ‚Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North‐America: An Analysis of
Model Curricula”

No 16 (May 2007)
Müller‐Clostermann, Bruno; Tilev, Milen: “Using G/G/m‐Models for Multi‐Server and Mainframe Ca‐
pacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT‐Professionals – Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft‐
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des
IT‐Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen‐
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model ‐ Ein Vorschlag für ein Forschungsprog‐
ramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re‐
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part III – Results Wirtschaftsin‐
formatik Discipline”

2005
No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys‐
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und ‐methoden in
Wirtschaftsinformatik und Information Systems“

6

The Institute for Computer Science and Business Information Systems (ICB), located at the Essen Campus, is dedicated to research
and teaching in Applied Computer Science, Information Systems as well as Information Management. The ICB research groups
cover a wide range of exper tise:

For more information visit us on the Web: http://www.icb.uni-due.de ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

Prof. Dr. K. Echtle
Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Prof. Dr. M. Goedicke
Specification of Software Systems

Prof. Dr. R. Jung
Information Systems and Enterprise Communication Systems

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Prof. Dr. K. Pohl
Software Systems Engineering

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Prof. Dr. A. Schmidt
Pervasive Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Mangement

Core Research Topics

E-Learning, Knowledge Management, Skill-Management,
Simulation, Art ificial Intelligence

Information Systems and Operations Research, Business
Intelligence, Data Warehousing

E-Business, E-Procurement, E-Government

Dependability of Computing Systems

Process Models, Software-Architectures

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Distributed Systems, Software Components, CSCW

Process, Data and Integration Management, Customer
Relationship Management

E-Business and Information Management,E-Entrepreneurship/
E-Venture, Virtual Marketplaces and Mobile Commerce, Online-
Marketing

Performance Evaluat ion of Computer and Communication
Systems, Modelling and Simulation

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Computer Networking Technology

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Data Management, Artificial Intelligence, Software Engineering,
Internet Based Teaching

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

