
Hitachi Zosen INOVA

Lucerne (Perlen) / Switzerland Energy from Waste Plant

Renergia, the New Ecological Energy from Waste Plant in Central Switzerland.

Maximum energy efficiency combined with low emissions – these are the declared aims of the new Renergia waste processing plant in Lucerne (Perlen).

After 50 Years in Service, the Lucerne Energyfrom-Waste Plant was Replaced

The municipal association for recycling, disposal and waste water in Lucerne (REAL) has been operating the Energy-from-Waste plant (EfW) at Lucerne-Ibach as a heat and power generating plant since 1971. Since then, the Lucerne EfW-plant had been added to and extended several times, the last time in 1996. In 2015, almost 50 years after its commissioning, the old plant was replaced by a new EfW-plant (which has been given the name Renergia) in the proximity of the paper factory Perlen Papier AG (PEPA).

Prime Location for Ecological Energy Generation

The aims of the Renergia plant are maximum energy efficiency and low emissions. The energy efficiency of a EfW plant is determined by a number of factors. The most important one is the location, which should allow a maximum export of steam or heat. A better location than that of the Renergia plant with its direct proximity to the paper factory and the district heating connection point is hardly conceivable. The second important aspect is energy recovery from the flue gases of the combustion, which should be as complete as possible. At the Renergia plant, this was achieved very effectively by keeping the flue gas flow and the chimney outlet temperature as low as possible and by omitting any water injection into the flue gas flow. Thanks to the Renergia plant, PEPA could reduce its heating oil consumption by 40 million litres annually and lower its CO₂ emissions by 90,000 tonnes.

New Approaches to Furnace and Boiler Design

The Renergia plant benefits from a number of innovative developments by Hitachi Zosen Inova that are aimed at simplifying the maintenance of the plant and, furthermore, at being able to control the operation of the plant well, enabling combustion of waste with little excess air. The water-cooled Inova grate combines the advantages of the grate designs of three experienced grate manufacturers. Its robust, straightforward and welldesigned construction ensures reliable and cost-efficient operation. It impresses with its very good serviceability, occupational safety and its stable, well controlled combustion. The plant is prepared for operation with reduced air supply. Its main characteristics are a boiler, the first pass of which is fully protected by Inconel 625 alloy cladding rather than by refractory lining, a two-stage secondary air and recirculated flue gas injection system, and an extended combustion control system.

| Efficient and Thorough Flue Gas Treatment

It is very important for an Energy-from-Waste plant to keep its emissions reliably low. The multiple stage flue gas treatment at the Renergia plant ensures that the strict requirements of the Swiss Clean Air Directive (LRV) are not only met but improved on.

Fuel Reception and Storage	Combustion and Boiler	Flue Gas Treatment	Energy Recovery	Residue Handling and Treatment
 Delivery Waste bunker Waste crane Feed hopper 	 5 Ram feeder 6 Hitachi Zosen Inova grate 7 Four-pass steam boiler 8 External Economiser 9 Secondary air injection 10 Secondary air fan 11 Recirculated flue gas injection 12 Recirculated flue gas fan 13 Primary air fan 	 14 Electrostatic precipitator 15 Sodium bicarbonate injection 16 Fabric filter 1 17 SCR DeNOx 18 Heat exchanger 1 19 Fabric filter 2 20 Induced draught fan 21 Heat exchanger 2 22 Stack 	 23 Extraction condensing turbine 24 Air cooled condenser 25 District heating heat exchanger 26 Process steam extraction 27 Transformer 28 Electricity export 	29 Bottom ash extractor30 Bottom ash bunker31 Bottom ash crane

This is achieved with the following sections:

- electrostatic precipitators that allow separate disposal of the fly ash,
- sodium bicarbonate injection with a downstream fabric filter for separating the acid pollutants,
- selective catalytic reduction (SCR) for the reduction of nitrogen oxide,
- residual heat recovery with an external economiser and heat exchanger,
- lime and lignite coke injection in order to absorb the last traces of acid pollutants as well as mercury and dioxins.

 Downstream of the induced draft fan, there is also an additional heat exchanger which cools the flue gas down to 80 °C and hence optimises the efficiency of the system.

Before the flue gas leaves the plant via the chimney, a continuous measuring system checks that the strict emission requirements are complied with.

Hitachi Zosen Inova AG | Hardturmstrasse 127 | 8005 Zurich | Switzerland Phone +41 44 277 11 11 | Fax +41 44 277 13 13 | info@hz-inova.com | www.hz-inova.com

General Project Data

Owner and operator	Renergia Zentralschweiz AG
Start of operation	2015
Total investment	CHF 320 million
Scope of HZI	Complete combustion system, boiler and flue gas treatment

Technical Data

Annual capacity	200,000 t
Number of lines	2
Throughput per line	12.5 t/h (nom) – 15.6 t/h (max)
Calorific value of waste	9.5 MJ/kg – 16 MJ/kg
Thermal capacity per line	47 MW
Waste type	Municipal solid waste

Combustion System

Grate type	Hitachi Zosen Inova grate
Grate design	2 grate lanes with 4 zones per grate lane
Grate size	Length: 10.8 m, width: 5.2 m
Grate cooling	First two zones water-cooled (Aquaroll®)

Boiler

Туре	Four-pass boiler, horizontal, external economiser
Steam flow per line	58 t/h
Steam pressure	41 bar
Steam temperature	410°C

Flue Gas Treatment

Concept	Electrostatic precipitator, sodium bicarbonate injection, fabric filter 1, SCR DeNOx,	
	external economiser, heat exchanger 1, lime and lignite coke injection, fabric filter 2,	
	heat exchanger 2	
Flue gas volume per line	78,000 m³/h	

Energy Recovery

Туре	Extraction condensing turbine
Electric power output	max: 28.1 MW gross; at max. steam export: 18.1 MW gross
Process steam export	75 t/h (3.5 bara/155°C)
District heat export	max: 22 MW