
An extended abstract of this paper will appear in the Proceedings of the IFIP
Working Conference on Policies Research in Identity Management – IDMAN
2010, Oslo, Norway, November 2010.

c©IFIP, 2010. This is the author’s version of the work. It is posted here by permission of IFIP
for your personal use. Not for redistribution. The definitive version was published in IFIP
Advances in Information and Communication Technology, 323, XIV, November 2010,
(Boston: Springer)

Mixing Identities with Ease

Patrik Bichsel and Jan Camenisch?

IBM Research, Switzerland
{pbi,jca}@zurich.ibm.com

http://www.zurich.ibm.com

Abstract. Anonymous credential systems are a key ingredient for a se-
cure and privacy protecting electronic world. In their full-fledged form,
they can realize a broad range of requirements of authentication sys-
tems. However, these many features result in a complex system that can
be difficult to use. In this paper, we aim to make credential systems eas-
ier to employ by providing an architecture and high-level specifications
for the different components, transactions and features of the identity
mixer anonymous credential system. The specifications abstract away
the cryptographic details but they are still sufficiently concrete to enable
all features. We demonstrate the use of our framework by applying it to
an e-cash scenario.

Key words: Anonymous Credentials, Architecture, Privacy.

? This work has been funded by the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 216483.



1 Introduction

We all increasingly use electronic services in our daily lives. To do so, we have
no choice but to provide plenty of personal information for authorization, billing
purposes, or as part of the terms and conditions of service providers. Dispersing
all these personal information erodes our privacy and puts us at risk of abuse of
this information by criminals. Therefore, these services and their authentication
mechanisms should be built in a way that minimizes the disclosed personal
information. Indeed, over the past decades, the research community has come
up with a large number of privacy-enhancing technologies that can be employed
to this end.

A key privacy-enhancing technology are anonymous credential systems [19,
5, 14]. In their basic form, they allow a user to obtain a credential from an issu-
ing authority, attesting to her attributes such as her birth date or access rights.
Later, she can use the credential to selectively reveal a subset of the attested
attributes, without revealing any other information (selective disclosure). In par-
ticular, even if she uses the same credential repeatedly, the different uses cannot
be linked to each other. It has been proven that anonymous credentials can be
used in practice today (even on Java Cards [2]) and publicly available imple-
mentations exist (e.g., www.primelife.eu/results/opensource/33-idemix).

The literature provides a number of cryptographic building blocks that allow
one to expand this basic functionality; in fact, many of them are needed to meet
the practical requirements of a modern public key infrastructure. These include:

Property proofs about attributes allow a credential owner to prove properties
about her attributes such as that one attribute is larger than another one
(even if they are contained in different credentials). This allows an owner to
prove, e.g., that her age lies in a certain range [8], or that an attribute is a
member of a given set [9].

Usage limitation such as ensuring that an owner can use a credential (i.e., proof
ownership of a credential) only a limited number of times (e.g., for e-cash) [11]
or a number of times within some context [10, 12] (e.g., twice per hour or
once per election). Furthermore, using domain specific pseudonyms enables
the implementation of usage restrictions as it makes a user linkable within
a given domain.

Revocation of credentials can be implemented using dynamic accumulators [13,
16] or a form of credential revocation lists [3, 6, 21]. This is necessary for in-
stance to withdraw the right associated with the ownership of the credential
or after leakage of the master secret of a user.

Revocation of anonymity in case of abuse of (the rights granted by) a credential
can be implemented using techniques from [14].

Verifiable encryption of attributes under some third party’s public key [17]. This
feature constitutes a generalization of anonymity revocation assuming the
user’s identity is an attribute encrypted for the party in charge of anonymity
revocation. It is a means to control the dispersal of attributes using a trusted
entity.

1



These mechanisms can be combined in various ways. Thereby they allow us
to build a multitude of privacy-enhancing applications such as anonymous e-
cash, petition systems, pseudonymous reputations systems, or anonymous and
oblivious access control systems. It is an enormous challenge to find the balance
between offering the whole spectrum of functionality and abstracting away from
the cryptographic details when implementing an anonymous credential system.
Furthermore, when designing the application programming interface we should
require no knowledge of cryptography but only familiarity with the concepts that
it realizes. However, reducing complexity bears the risk of tailoring the library
towards certain application scenarios which we must avoid. In addition, we re-
quire our specifications to be extensible and to go along with current standards.

At IBM Research – Zurich, we have implemented most of the protocols and
mechanisms described before. This implementation has been growing over the
last couple of years and it has been re-designed and re-implemented several times,
the current publicly available version is the forth complete iteration. We were
fortunate to receive feed back from a considerable number of universities who
have used different versions of our code to build various prototypes. Also, our
code has been used in the PRIME and PrimeLife projects to build prototypes,
which allowed us to test and discuss our implementation. We believe that the
current version provides a good compromise between providing access to the
features while ensuring the usability for application developers.

This paper describes the architecture and specification languages for all the
interactions of our anonymous credential system called Identity Mixer . Due to
its generality, the architecture and specification languages also apply to other
anonymous credential systems supporting (a subset of) the described features
including the one by Brands [5]. In addition, our proposal is extensible, i.e., we
allow for the specification of low-level features (e.g., commitments, pseudonyms,
and verifiable encryption) that can be utilized to implement a high-level func-
tionality (e.g., reputation system). This fosters the usage of the various func-
tionalities described before and simplifies building applications upon them.

We refer to [22] for the complete set of the specification languages for the
components of an anonymous credential system. Here we will discuss the most
complex ones and depict them in a human readable pseudo code form rather than
providing the XML version used by our implementation. We will incorporate our
specification language in the next release of Identity Mixer (www.primelife.eu/
results/opensource/33-idemix), where several examples for each component
will be available. We will demonstrate our framework by elaborating the example
of building an e-cash scenario.

Related Work. Camenisch and Van Herreweghen [18] describe the basic func-
tions and protocols of an anonymous credential system and define the APIs for
them. The system they describe provides only the very basic functionalities (i.e.,
selective disclosure and anonymity revocation). We provide much more extensive
(and less general) specifications at a slightly lower level, i.e., we do not directly
specify anonymity revocation but provide the more flexible verifiable encryption
primitive that can be used for the same purpose (cf. Section 1).

2



Bangerter et al. [1] provide a cryptographic framework that allows security
researchers to design privacy-protecting systems and protocols. In this work we
go further: we describe our (Java) implementation of all the building blocks
described by Bangerter et al. and describe the architecture and specification
languages that enable the design and realization of privacy-protecting systems
based on our Identity Mixer library.

There are various approaches to specify cryptographic objects such as cre-
dentials or authentication information. We provide a specification that is gen-
eral enough to allow to incorporate, for example, X.509 certificates. On the
other hand our proof specification could be extended to comply with the OASIS
SAML standard. Consequently, we align very well with current standards while
still extending their current functionality to a full-fledged anonymous credential
system.

Finally, Microsoft has recently released the protocol specification for U-
Prove [7], the credential scheme by Brands [5]. That document specifies the
cryptographic protocol for issuing credentials and proving possession of a cre-
dential with selective attribute disclosure. We provide a much more extensive
specification as Identity Mixer allows for more features compared to U-Prove
(cf. Section 5).

Organization of this Paper. In Section 2 we give a high-level description of
anonymous credential systems. Next, we describe the architecture in Section 3,
which consists of (1) a description of the different components of the Identity
Mixer (idemix ) credential system, (2) a detailed analysis of how those compo-
nents are used in the idemix protocols, and (3) the specification language for the
components. We give an example showing how we make use of the specifications
to realize an e-cash scheme in Section 4. Section 5 provides a comparison to
the U-Prove specification finally we provide an outlook on the integration with
current authentication technology in Section 6.

2 Overview of an Anonymous Credential System

An anonymous credential system involves the roles of issuers, recipients, provers
and verifiers (or relying parties). Parties acting in those roles execute the issuing
protocol, where a credential for the recipient is created by the issuer, or the prov-
ing protocol, where the owner creates a proof on behalf of the verifier. An entity
(e.g., user, company, government) can assume any role during each protocol run.
For instance, a company can act as verifier and run the proof protocol with a
user before assuming the role of the issuer and running the issuance protocol
(possibly with the same user). Finally, an extended credential system requires
the role of trusted third parties who performs tasks such as anonymity revo-
cation, credential revocation, or decryption of (verifiably) encrypted attributes.
Usually organizations or governments assume the roles the issuer, verifier and
trusted party, and natural persons the ones of recipient and prover.

3



Note, all parties in an anonymous credential system agree on general sys-
tem parameters that define the bit length of all relevant parameters as well as
the groups that will be used. In practice, these parameters can be distributed
together with the code and they must be authenticated.

To participate a user needs to choose her master secret key based on the group
parameters of the system. This secret allows her to derive pseudonyms, which she
can use similar to a session identifier, i.e., it allows the communication partner
to link the actions of the user. However, the user can create new pseudonyms
at her discretion and all pseudonyms are unlinkable unless the user proves that
they are based on the same master secret key. Certain scenarios require one user
only having one pseudonym with an organization, where we call such pseudonym
a domain pseudonym. In addition to being used for pseudonym generation, the
master secret will be encoded into every credential. This constitutes a sharing
prevention mechanism as sharing one credential implies sharing all credentials
of a user.

The setup procedure for issuers and trusted parties consists of generating
public key pairs, create a specification of the services they offer and publish the
specification as well as the public key. As an example, an issuer publishes the
structure(s) of the credential it issues and its public key.

Let us now elaborate on the issuing and the proving protocol. The credential
issuance protocol is carried out between an issuer and a recipient with the result
of the recipient having a credential. The credential consists of a set of attribute
values as well as cryptographic information that allows the owner of the cre-
dential (i.e., the recipient) to create a proof of possession (also called ‘proof of
ownership’ or ‘proof’). When encoding the values into a credential, the issuer
and recipient agree on which values the issuer learns and which will remain un-
known to it, i.e., they agree on a credential structure. In addition, they agree on
the values that will be encoded.

The proving protocol requires a prover and a verifier to interact, i.e., the
owner of one or several credentials acts as prover in the communication with a
verifier. Firstly, the entities define (interactively) what statement will be proved
about which attribute value. Secondly, the prover compiles a cryptographic proof
that complies with the statements negotiated before. Thirdly, the verifier checks
if the given proof is compiled correctly. The first step is a very elaborate process
that is outside of the scope of this paper. To indicate the complexity remember
that a proof can range from merely proving possession of a credential issued
by some issuer to proving detailed statements about the individual attributes.
Our specification focuses on the language that expresses the results from the
negotiation phase as well as the second and third step from before. The difficulties
here lie in the fact that a proof may be linked to a pseudonym of the user’s choice
or it may release a verifiable encryption of some attribute value under a third
party’s public key. In addition, we need to be able to express statements about
attributes that will be proved. Finally, the protocols for proving possession of
credentials and issuing credentials may be combined. In particular, before issuing

4



a new credential, the issuer may require the recipient to release certified attribute
values, i.e., prove that she holds a credential issued by another party.

3 Architecture & Specifications

In this section we first discuss the components of idemix , then we show how the
components are used in the protocols, and finally we provide the specification of
the objects used in those protocols. In particular, we introduce the specification
languages for the information that needs to be passed between participants.

3.1 Components of idemix

An extended anonymous credential system consists of many components. We will
introduce them starting with the attributes that are contained in credentials.
Continuing with the credentials we will finish the discussion with the optional
components such as commitments and pseudonyms, which are used to implement
extensions.

Attributes. We denote an attribute ai as the tuple consisting of name, value
and type, i.e., ai = {ni, vi, ti}. The name must be unique within its scope (e.g.,
a credential structure or a commitment), which will allow us to refer to the
attribute using that name and the scope. The value refers to the content of
the attribute, which is encoded as defined by the type. For each type we define
a mapping from the content value to a value that can be used in the crypto-
graphic constructions. Currently, idemix supports the attribute types string, int,
date1900s, and enum. Encoding a string to be used in a group G with generator
g can be achieved by use of a collision-resistant hash function H : {0, 1}∗ → G.
Integers do not require such mapping unless they are larger than the order of
the group used by idemix . In such case, the value will be encoded into several
attributes. We chose the granularity of the currently implemented date type as a
second and set the origin to 1.1.1900. Enumerated attributes are mapped using
a distinct prime according to the description in [9].

Credentials. We denote the set of attributes together with the corresponding
cryptographic information as credentials. We classify attributes contained in
credentials depending on which party knows the value of an attribute. More
concretely, the owner of a credential always knows all attribute values but the
issuer or the verifier might not be aware of certain values. During the issuance
of a credential we distinguish three sets of attributes as the issuer might know
a value, have a commitment of the value, or the value might be completely
hidden to him. Let us denote the these sets of attributes by Ak, Ac, and Ah,
respectively. Note that the user’s master secret, as introduced in Section 2, is
always contained in Ah.

5



When creating a proof of possession of credentials, the user has the possibility
to reveal only a selected set of attributes. Therefore, we distinguish the revealed
attributes, which will be learned by the verifier, from the unrevealed attributes.
We call the two sets of attributes during the proving protocol Ar and Ar. Note,
that each attribute can be assigned to either Ar or Ar independently of all
previous protocols and, in particular, independently of the issuing protocol.

Commitments and Representations of Group Elements. With commit-
ments [20] a user can commit to a value v, which we denote as C = Comm(v).
The commitment has a hiding and a binding property, where hiding refers to the
recipient not being able to infer information about v given C and binding refers
to the committer not being able to convince a recipient that C = Comm(v′) for
a v′ 6= v. Either of the two properties can be information theoretically achieved
where the other will hold computationally.

In our context the bases of a commitment are selected from the bases of the
group parameters. When we need the more general version of arbitrarily chosen
bases, we call the corresponding object a representation. Where the name is
chosen because such objects are representations of group elements w.r.t. other
group elements. Representations enable the integration of almost arbitrary proof
statements, e.g., they are building blocks for building e-cash schemes or (more
generally) cloning prevention for credentials.

Pseudonyms and Domain Pseudonyms. We denote randomized commit-
ments to the master secret as pseudonyms. Thus, a pseudonym is similar to a
public key in a traditional PKI and can be used to establish a relation with an
organization, e.g., in case a user wants an organization to recognize her as a
returning user. In contrast to an ordinary public-secret key pair, however, the
user can generate an unlimited number of pseudonyms based on the same master
secret without the link between those pseudonyms (i.e., the master secret key)
becoming apparent.

A domain pseudonym is a special kind of pseudonym in the sense that a user
can create exactly one pseudonym w.r.t. one domain. The domain is specified
by a verifier, which allows it to enforce usage control for its domain. Note that
no two pseudonyms (be it domain or ordinary) are linkable unless a user proves
that the underlying master secret key is the same.

3.2 Protocols

The basic building block of idemix is the Camenisch-Lysyanskaya (CL) signature
scheme [14, 15] which largely determines the protocols. The signature scheme
supports blocks of messages, i.e., with a single signature many messages can
be signed. In a simple credential, thus, each attribute value is handled as a
separate message. A more elaborate idea is to use a compact encoding as in [9]
to combine several attribute values into one message. The signature scheme also
supports “blind” signing, where the recipient provides the issuer only with a

6



commitment of the attribute value that will be included in the credential. This
is used for attributes of the set Ac. Credentials are always issued to a recipient
authenticated with a pseudonym, which ensures that the user’s master secret
gets “blindly” embedded into the credential.

The distinguishing feature of a CL signature is that it allows a user to prove
possession of a signature without revealing the underlying messages or even
the signature itself using efficient zero-knowledge proofs of knowledge. Thus,
when a prover wants to convince a verifier that she has obtained a credential
from an issuer and selectively reveal some of the messages of the credential, she
employs a zero-knowledge proof stating that she “knows” a signature by the
issuing organization and messages such that signature is valid. As the proof is
“zero-knowledge”, the user can repeat such a proof as many times as she wants
and still it is not possible to link the individual proofs. This statement even holds
if the verifier and the issuer pool their information. Of course, a user can also
prove possession of several credentials (acquired from different issuers) at once
to a verifier and then prove that these credentials share some messages (without
revealing the messages).

Let us specify the inputs of the protocols. The issuance protocol requires two
inputs for either participant, namely an issuance specification and a set of values.
The former is the same for both participants as it defines the issuance process,
i.e., it links to the definition of the structure of the credential to be issued or the
system parameters. The latter are the values assigned to the attributes of the
newly created credential. As we pointed out already, the issuer may operate on
a set of the values that differs from the one used by the receiver as Ah are not
know to it and for values in Ac the issuer only knows a commitment. Note, the
issuer may additionally input cryptographic components into the protocol. This
is useful when combining the issuance and the proving protocol, e.g., the issuer
can input a commitment received during a previous run of the proving protocol.
It can use the value “sealed” in the commitment as the value of an attribute
from the set Ac.

The proving protocol most notably makes use of the proof specification, which
the prover and the verifier both must provide as input to the protocol. This
specification defines all details of the proof. In addition, it links to the neces-
sary elements for compiling and verifying such proof. The prover provides all
credentials referenced in the proof specification as input and the verifier uses
the credential structures (cf. Section 3.3) to verify the proof. The cryptographic
proof object will be provided to the verifier during the protocol run.

Extensions to the Issuing Protocol. The issuing protocol has fewer degrees
of freedom compared to the proving protocol. This results from the credential
structure setting many limitations on the protocol. For instance, the structure
defines which attributes belong to which set (i.e., Ak, Ac, or Ah). Still we provide
a mechanism for extending the issuing protocol and use it for implementing a
feature that enables efficient updates of the attribute values (Ak) contained in
a credential.

7



Credential Updates. As the issuing protocol is interactive (and for security rea-
sons might need to be executed in a particularly protected environment)
re-running it would be impractical in many cases. Rather, idemix offers an
non-interactive method to update credentials where the issuer publishes up-
date information for credentials such that attribute values are updated if
necessary.
This feature can, e.g., be used to implement credential revocation. The mech-
anism that we have implemented employs epochs for specifying the life time.
A credential thus expires and can be re-validated when updating the expi-
ration date (given that the issuer provides such) [13].

Extensions to the Proving Protocol. The proving protocol requires the
prover and the verifier to agree on the attribute values that will be revealed
during the proof, i.e., all attributes ai are contained in either Ar or Ar such that
Ar ∩Ar = ∅. In addition, the verifier may define what partial information about
the attributes ai ∈ Ar has to be proved, where partial information denotes:

Equality. A user can prove equality of attribute values, where the values may
be contained in different credentials. In particular, equality proofs can be
created among values that are contained in any cryptographic object such
as credentials or commitments. As an example, a user can compute a com-
mitment to a value v, with C = Comm(v). Assuming a value v′ is contained
in a credential, the user can prove that v = v′.

Inequality. Allows a user to prove that an attribute value is larger or smaller
than a specified constant or another attribute value.

Set Membership. Each attribute that is contained as a compact encoding as
described in [9] enables the user to prove that the attribute value does or
does not lie in a given set of values.

Pseudonym. A pseudonym allows a user to establish a linkable connection with
a verifier. Furthermore, domain pseudonyms allow a verifier to guarantee
that each user only registers one pseudonyms w.r.t. his domain.

Verifiable Encryption. A user can specify an encryption public key under which
an attribute value contained in a credential shall be (verifiably) encrypted.

3.3 Specification Languages

As pointed out in Section 1, one challenge when designing the specification
languages is to abstract from the underlying cryptography while allowing access
to flexible primitives that enable developers to build a broad range of systems.
The necessity of both parties having certain information (e.g., the credential
structure) in order to extract the semantic of a proof presents another difficulty.
For instance, a verifier needs to know the issuer of a credential, the attributes
names, their order or their encoding within a credential used in a proof. Thus, it
is essential to separate the structural information from the data, where the latter
may remain unknown to one communication partner. We will not introduce such
separation for objects that do not require it (e.g., public keys). Our specifications

8



are in XML and each component uses and XML schema to define its general
structure. Note that the information acquired through unsecured channels needs
to be authenticated, which can be attained using a traditional PKI.

System and Group Parameters. The system and group parameters are specified
as a list of their elements. In addition, the group parameters contain a link to the
system parameters. Both system and group parameters need to be authenticated.

Issuer Key Pair. The issuer key pair consists of a public key and a private key,
where mostly the specification of the public key is of interest as the private key
as it is never communicated. The public key links to the group parameters with
respect to which it has been created. Note that apart from the public key, an
issuer needs to publish the structures of the credentials it issues. Even though
this information might be included in the public key, we suggest to create a
designated file.

References{

Schema = http://www.zurich.ibm.com/security/idemix/pubKey.xsd

GroupParams = http://www.zurich.ibm.com/security/idemix/gp.xml

}

Elements{

S = { 9328...4423 }, Z = { 9058...2857 }, n = { 1109...7843 }

R = { 3287...4359, 8384...1035, 8475...1101, 5837...5752,

3285...0932, 9438...3218 }

}

Fig. 1. Example of an issuer public key. The values of the public key are abbreviated
for readability reasons.

Third Party Information. A third party offering some service, such as being
trusted party for verifiably encrypting values, must publish a description of the
services it offers.

Credentials. As mentioned earlier, we decompose credentials into a credential
structure, which is the public part, and the credential data, which is private to the
owner of the credential. In addition a credential data object is partially populated
and sent to the verifier during the proving protocol. This decomposition is needed
in the issuing process, when the credential data has not been created, as well as
in the verification protocol, where the verifier does only get to know a selected
subset of the credential data.

In Fig. 2 we describe the credential structure. It contains (1) references to the
XML schema and the issuer public key and (2) information about the structure
of a credential, which is needed to extract the semantics of a proof. We partition
the latter into the attribute, feature, and implementation specific information.

The attribute information defines name, issuance mode (cf. Section 3.1), and
type (e.g., string, enumeration) of each attribute. The feature section contains all
relevant information about extensions such as domain pseudonyms. Finally, the

9



References{

Schema = http://www.zurich.ibm.com/security/idemix/credStruct.xsd

IssuerPublicKey = http:www.ch.ch/passport/ipk/chPassport10.xml

}

Attributes{

Attribute { FirstName, known, type:string }

Attribute { LastName, known, type:string }

Attribute { CivilStatus, known, type:enum }

{

Marriage, NeverMarried, Widowed, LegallySeparated,

AnnulledMarriage, Divorced, Common-lawPartner

}

Attribute { SocialSecurityNumber, known, type:int }

Attribute { BirthDate, known, type:date1900s }

Attribute { Diet, committed, type:string }

Attribute { Epoch, known, type:int }

}

Features{

Domain { http://www.ch.ch/passport/v2010 }

Update { http://www.ch.ch/passport/v2010/update.xml }

}

Implementation{

PrimeFactor { CivilStatus:Marriage = 3 }

PrimeFactor { CivilStatus:NeverMarried = 5 }

PrimeFactor { CivilStatus:Widowed = 7 }

PrimeFactor { CivilStatus:LegallySeparated = 11 }

PrimeFactor { CivilStatus:AnnulledMarriage = 13 }

PrimeFactor { CivilStatus:Divorced = 17 }

PrimeFactor { CivilStatus:Common-lawPartner = 19 }

AttributeOrder { FirstName, LastName, CivilStatus,

SocialSecurityNumber, BirthDate, Diet, Epoch }

}

Fig. 2. Example credential structure where we assume this structure being located at
http://www.ch.ch/passport/v2010/chPassport10.xml and corresponding to a Swiss
passport. For the XML version refer to [22].

implementation specific information is mapping general concepts to the actual
implementation. As an example, enumerated attributes are implemented using
prime encoded attributes [9], which requires the assignment of a distinct prime
to each possible attribute value.

The credential data most importantly refers to the credential structure that
it is based on. In addition, it contains the (randomized) signature and the values
of the attributes. Figure 3 shows a credential created according to the structure
provided in Fig. 2 and corresponding to the proof specification given in Fig. 9.

Credential Updates. Credential update information is twofold: it consists of (1)
general information detailing, e.g., which attributes will be updated, and (2) the
information specific to each credential. The former is linked from the credential

10



References{

Schema = http://www.zurich.ibm.com/security/idemix/cred.xsd

Structure = http://www.ch.ch/passport/v2010/chPassport10.xml

}

Elements{

Signature { A:4923...8422, v:3892...3718, e:8439...9239 }

Features { Update:http://www.ch.ch/passport/v2010/update/7a3i449.xml }

Values { FirstName:Patrik; LastName:Bichsel; ... }

}

Fig. 3. This example shows a Swiss passport credential. Note that the owner who will
act as prover knows all the attribute values.

structure (see Fig. 2), the latter is referenced from the credential (see Fig. 3).
Only attributes from the set Ak can be updated.

References{

Schema = http://www.zurich.ibm.com/security/idemix/update.xsd

Type = http://www.ch.ch/passport/v2010/update.xml

}

Elements{

Signature { A:5930...8120, v:3221...8221, e:8934...2911 }

Values { Epoch:3284..2342 }

}

Fig. 4. Example of the specific credential update information, which in this case con-
sists of the update of the epoch value for the credential given in Fig. 3.

Commitment and Representation. A commitment and a representation, similar
to a credential, consist of a set of values. We assume that the bases for the
commitments are listed in the same file as the group parameters. Thus, they
use a reference to link to the corresponding parameters. The representations,
however, list their bases in addition to the list of exponents.

References{

Schema = http://www.zurich.ibm.com/security/idemix/comm.xsd

GroupParams = http://www.zurich.ibm.com/security/idemix/gp.xml

}

Elements{

Name = o2

Value = 2622...8343

}

Fig. 5. This example shows the commitment that the prover of the example in Fig. 9
issued and that can be used in the issuance as specified in Fig. 8.

11



Pseudonym and Domain Pseudonym. As pseudonyms are a special case of com-
mitments, they also contain a reference to the group parameters they make use
of. In addition, at the user’s side pseudonyms contain the randomization expo-
nent value(r in Fig. 7) . Domain pseudonyms additionally link to their domain.

References{

Schema = http://www.zurich.ibm.com/security/idemix/nym.xsd

GroupParams = http://www.zurich.ibm.com/security/idemix/gp.xml

}

Elements{

Name = nym1

Values { Commitment:9874...3298; r:2832...2938 }

}

Fig. 6. Example of a pseudonym as it is stored by a user (i.e., it contains the secret
randomization exponent.

Verifiable Encryption. A verifiable encryption is transferred to a verifier and (if
necessary) to the trusted party for decryption. It does not need to be stored at
the prover’s side as it usually is not repeatedly needed. It contains the public
key used for the encryption as well as the name used in the proof specification,
the label and the ciphertext of the encryption.

References{

Schema = http://www.zurich.ibm.com/security/idemix/verEnc.xsd

PublicKey = http://www.insurance.com/trustedParty/publicKey.xml

}

Elements{

Name = verifiableEncryption1

Label = 3842...2384

Values { ciphertext:9874...3298 }

}

Fig. 7. Example of a verifiable encryption as sent to a verifier.

Protocol Messages. When running the protocols, there are several messages that
are passed between the communication partners. The specification of those ob-
jects contains the reference to the schema and the cryptographic values. Each
cryptographic value is assigned a name such that the communication partner
can retrieve the values easily.

Issuance Specification. Issuing a credential most importantly requires a creden-
tial structure and a set of attribute values. As introduced in Section 3.1, the set
of values from the issuer may differ from the set of the recipient. More specif-
ically, values of attributes in Ak are known to both recipient and issuer and
values of attributes ai ∈ Ah are only known to the recipient. For each attribute
ai ∈ Ac the recipient knows the corresponding value vi and the issuer only knows

12



a commitment C = Comm(vi). We define the issuance modes known, hidden,
and committed in the credential structure to denote the set an attribute belongs
to. The reason for defining the issuance mode in the credential structure is to
unify the issuance modes between different recipients.

As the majority of the information used in the issuance protocol is defined by
the credential structure, the issuance specification is only needed to implement
advanced features (e.g., binding a proving and an issuing protocol).

References{

CredStruct = http://www.ch.ch/passport/v2010/chPassport10.xml

Commitments{ Commitment randCommName2 }

}

Elements {

Attributes{ Diet:randCommName2 }

}

Fig. 8. Example of an issuance specification defining that a commitment is expected.
This commitment will be used to write the value of the attribute called “Diet”. The
issuer will not get to know the value of this attribute.

Proof Specification. The proof specification is more elaborate than the issuing
specification as the idemix anonymous credential system supports many features
that require specification. Thus, even when using a specific credential we can
imagine a broad range of different proofs to be compiled. We start by specifying
an identifier for each distinct value that will be included in a proof. Also, we
specify the attribute type of each identifier, where the protocol aborts if the type
of the identifier and the type of an attribute that it identifies do not match. In
addition to identifiers, we allow for constants in the proof specification.

We start the definition of the statements to be proved with a list of cre-
dentials that the user proves ownership of (i.e., the user proves knowledge of
the underlying master secret key). Next, we assign attribute identifiers or con-
stants to the attributes, where the constants will cause an equality proof w.r.t.
the constant. Using the same identifier several times creates an equality proof
among those attributes (e.g., id2 is used within two credentials). More techni-
cally, one identifier is tied to one T-value and one S-value of ZKP, thus, if the
values assigned to one identifier do not match, the ZKP will fail. Note that we
only need to assign an identifier to attributes that are either revealed or partial
information is proved. Attributes with no corresponding identifier are added to
the set of unrevealed attributes Ar.

Let us elaborate the examples of property proof provided in the specifica-
tion in Fig. 9 before describing the property proofs more generally. Using two
commitments and a representation that have already been communicated to the
verifier, the user proves that (1) the last name in all credentials are identical, (2)
the employee is in band 5, (3) the prover is widowed or married as certified by the
Swiss government, (4) the employee is at least 5 years with IBM (where this proof
uses values from the public key of the issuer of the IBM employee credential), (5)
the commitment with name randCommName1 contains the first and last name as

13



Declaration{ id1:unrevealed:string; id2:unrevealed:string;

id3:unrevealed:int; id4:unrevealed:enum;

id5:revealed:string; id6:unrevealed:enum }

ProvenStatements{

Credentials{

randName1:http://www.ch.ch/passport/v2010/chPassport10.xml =

{ FirstName:id1, LastName:id2, CivilStatus:id4 }

randName2:http://www.ibm.com/employee/employeeCred.xml =

{ LastName:id2, Position:id5, Band:5, YearsOfEmployment:id3 }

randName3:http://www.ch.ch/health/v2010/healthCred10.xml =

{ FirstName:id1, LastName:id2, Diet:id6 } }

Enums{

randName1:CivilStatus = or[Marriage, Widowed]

randName3:Diet = or[Diabetes, Lactose-Intolerance] }

Inequalities{ {http://www.ibm.com/employee/ipk.xml, geq[id3,4]} }

Commitments{ randCommName1 = {id1,id2}; randCommName2 = {id6} }

Representations{ randRepName = {id5,id2; base1,base2} }

Pseudonyms{ randNymName; http://www.ibm.com/employee/ }

VerifiableEncryptions{ {PublicKey1, Label, id2} }

Message { randMsgName = "Term 1:We will use this data only for ..." }

}

Fig. 9. Example proof specification using a Swiss passport, an IBM employee creden-
tial, and a Swiss health credential.

certified by the Swiss government. Here, the commitment randCommName2 could
be used for an issuance protocol as explained in Section 3.3.

Note that the proof specification does not contain any implementation spe-
cific parts. We define the idemix specific details in the credential structure spec-
ification (see Fig. 2).

More generally, we allow for proofs of set membership for enumerated at-
tributes. We support the and, or, and not operators on a given set of values
and w.r.t. an attribute identifier. Similar to set membership proofs, we allow for
inequality proofs, i.e., proofs for statements of the form vi ◦ v̂, where vi is an
attribute value, ◦ is the operator, and v̂ can be a constant or another attribute
value. Currently, the following operators are implemented: <, >, ≤ , and ≥.
Consequently, we also support proofs that an attribute lies within a specified
range.

Relating to the components that we describe in Section 3.1, we need to de-
scribe how commitments, representations, pseudonyms and domain pseudonyms
are handled. For each exponent of any of those components, the proof specifi-
cation defines the identifier that it relates, or the constant that it is equivalent
to. In addition, all the components of a proof specification are assigned ran-
dom names, which allow for the identification of the corresponding object in the
context of a proof but prevent different proofs from becoming trivially linkable.

14



The corresponding objects contain the cryptographic values such as the sig-
nature on a credential, the commitment value or the bases and the value of a
representation.

4 Example Use Case

In this section we describe how to implement a simple anonymous e-cash scheme
with our library to give the reader an idea of how our specifications can be
used. We recall the basic idea of anonymous e-cash [4]: The user has an ac-
count with the bank under some identity u. To withdraw a coin from the
bank, the bank issues the user a credential with the following three attributes
(user id , serialnum , randomizer) (see Fig. 10). The first one is known to the issuer
and is set to U , the other two are not known to the issuer (serialnum , randomizer ∈
Ah) and are random values chosen from Zq by the user as s and r, where q is
the order of the groups used for the pseudonyms (and is part of the system pa-
rameters). Let g denote the generator of that group (which is part of the group
parameters). The form of the credential can be deducted from Fig. 3.

References{

Schema = http://www.zurich.ibm.com/security/idemix/credStruct.xsd

IssuerPublicKey = http://www.bank.ch/ecash/ipk/credPK.xml

}

Attributes{

Attribute { UserId, known, type:int }

Attribute { SerialNum, hidden, type:int }

Attribute { Randomizer, hidden, type:int }

}

Implementation{

AttributeOrder { UserId, SerialNum, Randomizer }

}

Fig. 10. The credential structure of the e-coin issued by the bank. Let us assume that
this structure is located at http://www.bank.ch/ecash/coin.xml.

When the user wants to spend a coin anonymously with a merchant, the
user obtains from the merchant a random value v ∈ Zq, computes a = u + rv
(mod q), generates a representation with ga being the group element, and g and
gv being the bases. Then she generates a proof to show that she owns a cre-
dential from the bank where she reveals the attribute serialnum and proves that
the attributes user id and randomizer) are also appearing in the representation.
Figure 11 shows the representation object that contains the representation ga

and the bases g and gv. We provide the proof specification in Fig. 12.
The user then sends (a, s) along with the proof to the merchant who accepts

the coin if the proof verifies and if the representation object was indeed computed
correctly. The merchant verifies the latter by re-computing the representation.
Later, the merchant will deposit the coin with the bank who debits the merchant
if the proof verifies. Also, the bank will check whether s has appeared before.

15



References{

Schema = http://www.zurich.ibm.com/security/idemix/rep.xsd

Params = http://www.zurich.ibm.com/security/idemix/gp.xml

}

Elements{

Name = ksdfdsel

Value = 8483...2939

Bases { 3342...2059, 4953...3049 }

}

Fig. 11. This example shows the representation that the user created.

If this is the case it will compute u from the two a and v values present in the
two deposits (i.e., solve the two linear equations a1 = u + rv1 (mod q) and
a2 = u + rv2 (mod q) for u) and then punish the user u accordingly (e.g., by
charging the user for the extra spending).

Declaration{ u1:unrevealed:int; u2:unrevealed:int;

r1:revealed:int }

ProvenStatements{

Credentials{

sfeoilsd:http:www.bank.ch/ecash/coin.xml =

{UserId:u1, SerialNum:r1, Randomizer:u2};

Representations{ ksdfdsel = {u1,u2; base1,base2} }

}

Fig. 12. The proof specification for the user when spending the e-coin at a merchant.
Note that base1 = g and base2 = gv holds.

5 Comparison with the U-Prove Specification

Microsoft has recently released the specification of the U-Prove protocols by
Brands and Paquin. The specification describes the interactive issue protocol
between the receiver and the issuer and the mechanisms to present and verify
tokens to a verifier. The issue specification defines a number of attributes that
will be contained in the token. These attributes are known by both the receiver
and the issuer. At the end of the protocol, the receiver possesses a signature
by the issuer on the attributes. While they call this signature a U-Prove token
we would call it a credential. This issuing process is called a blind signature
scheme in the literature, i.e., the issuer does not learn the token that the receiver
obtains but only learns the attributes. Brands and Paquin then specify a token
presentation algorithm (subset presentation proof). The input to the algorithm
is the U-Prove token and the subset of the attributes that shall be disclosed (the
other attributes remain hidden to the verifier). The output is an augmented
U-Prove token that can then be sent to a verifier who runs the verification
procedure to assert the validity of the token w.r.t. to the issuer’s public key and
the disclosed attributes.

Let us compare the U-Prove specifications to the ones presented in this pa-
per. We do not attempt a cryptographic comparison here. The U-Prove issuing

16



specification realizes a subset of our issuance specification, i.e., U-Prove requires
that all attributes have to be known by the issuer, whereas in our specification,
some attributes can be hidden from the issuer or only be given by commitments.
Thus, it is for instance not possible with U-Prove to issue several credentials
(tokens) to the same (pseudonymous) user as this requires all credentials con-
taining a (secret) attribute that is essentially the user’s secret key and plays the
role of a secret identity.

Similarly to the issuing specification, the proof specification (or token presen-
tation specification) of U-Prove realizes a subset of ours. U-Prove only supports
that a subset of the attributes can be disclosed, but does not feature proofs
of statements about attributes nor does it provide the possibility to release at-
tributes as commitments or verifiable encryption. Furthermore, U-Prove does not
support proving possession of several credentials at the same time and proofs
among attributes (be they disclosed or not) contained in different credentials.
Furthermore, U-Prove has no support for pseudonyms. Let us finally remark
that for cryptographic reasons U-Prove tokens can be presented only once (af-
terwards the different presentations would become linkable to each other). The
idemix credentials can be used for an unlimited number of proving protocols
without transactions becoming linkable.

Despite the differences in the specifications, it is possible to use U-Prove to-
kens as part of the framework described in this paper. After all, the U-Prove
issuing specification is a means to issue a signature on attributes and it is not
hard to extend their specification to cover all the features of our specification.
The resulting U-Prove Tokens would still be valid U-Prove Tokens. The same
holds for the U-Prove subset presentation proof specification, but of course such
extended U-Prove tokens could no longer be verified according to the (unmod-
ified) U-Prove subset presentation proof as the extended proof will necessarily
contain new elements.

6 Conclusion

We have provided an architecture and specifications of the components, proto-
cols, and data formats of the idemix anonymous credential system. The archi-
tecture and specification builds the basis to build a large range of applications
that require some form of anonymous authentication. We believe that especially
our specification language for the various features of the proving protocol is
well-suited for making easy use of the different components such as commitment
schemes, verifiable encryption, and representations of group elements. That is,
with our specification we enable implementation of systems without having an
understanding of the cryptography realizing a feature, in fact, we only require
knowledge of the very principle. However, this is the minimal understanding that
we can require.

We compared our languages to the U-Prove specification and noticed that the
more extensive set of features requires a more powerful language. Our language
does not manage to hide all this complexity. Still, we hide all the cryptographic

17



complexity (e.g., which groups need to be used or which exponentiation should be
computed) while offering access to primitives that proved helpful when designing
various privacy friendly systems.

When it comes to established standards we note that the proof specification
together with the corresponding (cryptographic) proof values can be seen as the
privacy-enhanced equivalent of an X.509 attribute certificate or SAML token:
The proof specification defines the attributes that are stated and the proof val-
ues correspond to the digital signature on the certificate/token. We could also
integrate with X.509 and SAML by using their formats for the specification of
the attribute statement and then derive the proof protocol specification from
that. The proof specification and the proof values would in this case be the digi-
tal signature. This approach would, however, require some changes in the X.509
and SAML specifications. We leave this as future work.

Acknowledgements

We enjoyed numerous discussions about Identity Mixer and its implementa-
tion with far too many people to mention all of them here. Thanks to all of
you! We are especially grateful to our collaborators at IBM who contributed in
numerous ways: Endre Bangerter, Abhilasha Bhargav-Spantzel, Carl Binding,
Anthony Bussani, Thomas Gross, Anna Lysyanskaya, Susan Hohenberger, Els
van Herreweghen, Thomas S. Heydt-Benjamin, Phil Janson, Markulf Kohlweiss,
Sebastian Mödersheim, Gregory Neven, Franz-Stefan Preiss, abhi shelat, Vic-
tor Shoup, Dieter Sommer, Claudio Soriente, Michael Waidner, Andreas Wespi,
Greg Zaverucha, and Roger Zimmermann.

References

1. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic frame-
work for the controlled release of certified data. In SPW ’04, LNCS. Springer,
2004.

2. Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous cre-
dentials on a standard Java Card. In Ehab Al-Shaer, Somesh Jha, and Angelos D.
Keromytis, editors, Proc. 16th ACM CCS, pages 600–610. ACM Press, November
2009.

3. Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, Proc.
11th ACM CCS, pages 168–177. ACM Press, 2004.

4. Stefan Brands. Electronic cash systems based on the representation problem in
groups of prime order. In CRYPTO ’93, pages 26.1–26.15, 1993.

5. Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates—
Building in Privacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven,
The Netherlands, 1999.

6. Stefan Brands, Liesje Demuynck, and Bart De Decker. A practical system for
globally revoking the unlinkable pseudonyms of unknown users. In Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, editors, ACISP, volume 4586 of LNCS, pages
400–415. Springer, 2007.

18



7. Stefan Brands and Christian Paquin. U-prove cryptographic specification v1.0,
March 2010.

8. Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set
membership and range proofs. In Josef Pieprzyk, editor, ASIACRYPT ’08, pages
234–252, 2008.

9. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials.
In Proc. 15th ACM CCS, pages 345–356. ACM Press, November 2008.

10. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times anony-
mous authentication. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, Proc. 13th ACM CCS, pages 201–210. ACM Press, 2006.

11. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash.
In Ronald Cramer, editor, Eurocrypt 2005, volume 3494 of LNCS, pages 302–321.
Springer, 2005.

12. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing account-
ability and privacy using e-cash (extended abstract). In SCN ’06, volume 4116 of
LNCS, pages 141–155, 2006.

13. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials. In Stanislaw
Jarecki and Gene Tsudik, editors, Public Key Cryptography, pages 481–500, 2009.

14. Jan Camenisch and Anna Lysyanskaya. Efficient non-transferable anonymous
multi-show credential system with optional anonymity revocation. In Birgit Pfitz-
mann, editor, EUROCRYPT ’01, volume 2045 of LNCS, pages 93–118. Springer,
2001.

15. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient proto-
cols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN ’02,
volume 2576 of LNCS, pages 268–289. Springer, 2003.

16. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matthew K. Franklin, editor, CRYPTO ’04, volume
3152 of LNCS, pages 56–72. Springer, 2004.

17. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. http://eprint.iacr.org/2002/161, 2002.

18. Jan Camenisch and Els Van Herreweghen. Design and implementation of the
idemix anonymous credential system. In Proc. 9th ACM CCS. ACM Press, 2002.

19. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Comm. of the ACM, 24(2):84–88, February 1981.

20. Ivan Damg̊ard and Eiichiro Fujisaki. An integer commitment scheme based on
groups with hidden order. In ASIACRYPT ’02, volume 2501 of LNCS. Springer,
2002.

21. Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. Revocable group sig-
nature schemes with constant costs for signing and verifying. In Stanislaw Jarecki
and Gene Tsudik, editors, Public Key Cryptography, volume 5443 of LNCS, pages
463–480. Springer, 2009.

22. IBM Research Zurich Security Team. Specification of the identity mixer crypto-
graphic library. IBM Research Report RZ 3730, IBM Research Division, April
2010.

19


